本文共计6479个文字,预计阅读时间需要26分钟。
重庆高考数学考点分析范文 第一篇
这一学期的拓展课是“高中数学思想学习的方法好研究”。老师最少的题量为我们分析讲解最典型和常见的题型,帮助我们摆脱题海之苦,提高数学成绩。
通过本学期拓展课的学习,我能大概了解、掌握了部分的高中数学的学习方法。多层次、多角度、多交叉、多广度,深度上对知识加以拓展和提高,并且能在平日学习数学的过程中有所拓宽和发展,对课堂内容知识的归纳,总结,梳理等方面有进步,培养了自己对数学学习的兴趣好良好的习惯。
在学习到解决数学问题的方法和思路的同时,对一些在课堂上或是平时不懂、迷惑的地方进行探讨,更好地加强了对知识点的理解和应用。例如数学思想中的“分类讨论”,“函数数学在不等式中的应用”,“参数问题”等有了深一步的研究好拓展,便于让我在今后的数学学习中加以应用和解答。臂如:
①对于参数问题的学习,我们通过学习不同的例题,通过研究、分析得到解决这一问题的主要方法与途径———分离参数,变换主元等常用的解题方法。
②对分类讨论这一问题的研究:引起分类讨论的原因主要是由于存在不确定的元素及公式,概念的分类……,并研究了基本步骤等等。
总之进入高中以后,数学学习的方法好内容都有了很大转变,题目的难易程度也比以前有了很大的提高,及时消化吸收新知识,复习巩固旧知识也成了我的困扰。但通过此次学习,我发现数学学习其实是有径可循。对于一些问题要予以归纳总结,并作一些相配套的练习,以达到巩固效果。一学期来,我收获了很多,尤其在学习方法上有了系统的概念,能够更好地高中的数学学习。
重庆高考数学考点分析范文 第二篇
对于高中阶段的数学学习,更多强调的是学生的思维品质的培养,注重的是学生在掌握了初步的知识的基础上,通过分析、归纳、综合,不断地对所学知识进行演绎,经过不断地推导总结,对知识形成本质上的认识。解决学生的思维障碍对于高中数学的学习有很大的积极意义。根据对这些不断地总结思考,对于解决高中数学思维障碍,我有以下几点认识和思考。
1.教师在教学过程中应熟悉学生已有的知识状况
高中数学,相比于初中和小学阶段的数学,比较注重于逻辑思考。因此,教师在讲解新的知识的时候,要先回顾教学需要用到的基础知识,做好新旧知识的衔接,不让学生觉得突兀。例如,在刚开始学习高中数学的时候,一般都要先复习初中阶段学到的一元二次函数的具体内容,而对于那些不含任何参数的函数的最大值和最小值的求解比较简单,对于那些含有参数的求解可能对于很多的学生有点困难。在这个时候,我就先从不含参数的函数最大值和最小值求解开始讲起,逐步过渡到含有参数的函数的最大值最小值的求解,最后对求解区间变化的题目进行讲解。经过这样几步的层层递进,学生就会掌握各种一元二次函数的最值求解问题,也在一定程度上调动了全班学生的学习积极性。学生的思维也变得很清晰、很系统,对知识点形成了总体的认识。
2.教师在教学过程中应侧重于学生的发散思维能力的培养
3.教师在教学过程中应更新教学理念,改进教学方法
教学本来就是一种认识新事物的过程,教师要根据认识新事物的规律来引导学生在已有的知识的基础上能够做好与新知识的衔接,在头脑中建立起二者之间的相互关系。教学方法的改进要考虑到学生的实际情况,不能只按照教师自己的逻辑思考进行“填鸭式”的教学。教师要讲教材中的一些定义和定理引导学生深刻理解其内涵,从问题的表面去逐步挖掘其本质性的东西,要使学生逐步形成抽象的思维,能够在解决一些经常见到的数学问题的同时也要尝试着解决一些抽象的数学难题。在遇到一些难以解决的问题时,要引导学生变换思维方式,探索解决问题的新的方法和手段。
4.教师在课堂教学中应将数学思想方法作为教学的重点
高中数学的学习更多的是数学思维方法的学习。学生在学习中要逐步掌握一些常见的数学思维方法,比如数学建模。对于数学的学习,不在于做了多少的题,而是在做每一种类型的题目的时候能够领悟其中用到的数学思维方法。一旦掌握了解题的思维方法,至于计算,就是一些基础技能的考查了。教师要引导学生在掌握数学思维方法的基础上,在解题过程中能够通过分析题目,想到用哪一种思维方法来解决问题,或者通过适当地转换形式,以适用某个数学思维方法。综上所述,在高中数学的教学过程中,教师要不断地进行教学总结,要掌握班上学生的数学基础情况,培养学生集中思维的同时要重视发散思维能力的培养,加强自身的业务能力,根据学生的反馈信息改进教学方法,将对数学思想方法的教学作为重点。教师要不断地在实践当中进行探索和发现,总结教学的经验,并进行及时的改进,只有这样才能不断改善高中数学教学,解决学生的数学思维障碍,这对于高中数学的教学具有深远的重大意义。
重庆高考数学考点分析范文 第三篇
说教材:
1、地位、作用和特点:
《》是高中数学课本第册(修)的第章“”的第节内容,高中数学课本说课稿。
本节是在学习了之后编排的。通过本节课的学习,既可以对的知识进一步巩固和深化,又可以为后面学习打下基础,所以
是本章的重要内容。此外,《》的知识与我们日常生活、生产、科学研究有着密切的联系,因此学习这部分有着广泛的现实意义。
教学目标:
根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:
(1)知识目标:a、b、c
(2)能力目标:a、b、c
(3)德育目标:a、b
教学的重点和难点:
(1)教学重点:
(2)教学难点:
二、说教法:
基于上面的教材分析,我根据自己对研究*学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得最佳效果。另外还注意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学过xxx正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注重渗透数学思考方法(联想法、类比法、数形结合等一般科学方法)。让学
重庆高考数学考点分析范文 第四篇
圆与圆的位置关系的判断方法
一、设两个圆的半径为R和r,圆心距为d。
则有以下五种关系:
1、d>R+r两圆外离;两圆的圆心距离之和大于两圆的半径之和。
2、d=R+r两圆外切;两圆的圆心距离之和等于两圆的半径之和。
3、d=R—r两圆内切;两圆的圆心距离之和等于两圆的半径之差。
4、d
5、d
二、圆和圆的位置关系,还可用有无公共点来判断:
1、无公共点,一圆在另一圆之外叫外离,在之内叫内含。
2、有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。
3、有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
重庆高考数学考点分析范文 第五篇
摘要:在高中数学教学中,教师的反思与教学的效果究竟有什么关系?教师的反思对教学效果是否有影响?如果有影响的话,教师的反思是如何影响教学的效果的呢?教师的反思有哪些途径与方法?这些问题对提高高中数学教育质量和中学数学教师的*成长有着重要的意义。本文就是从建立良好的师生关系、高中数学教学过程中的情境创设、培养学生的创新意识、注重教师自身素质的提高、充分利用多媒体手段这几个方面来阐述教师应该如何反思自己的教学工作,从而做好高中数学教学工作。
关键词:高中数学教学教师反思
《高中新课程标准》提倡:“学生的数学学习内容应当是现实的,有意义的,富有挑战*的。这些内容有利于学生主动地进行观察、实验、猜想、验*、推理与交流等数学活动。对内容的呈现要采用不同的表达方式,以满足多样化的学习需求。特别提倡学生动手实践,自主探索与合作交流是学生学习数学的重要方式,关注是否给学生创设了一种情境,使学生亲身经历数学活动过程。”要达到这一目的,取得更好的教学效果,笔者认为可以进行如下反思。
一、建立良好的师生关系
教师对学生的热爱和期待是学生学习数学的动力。学生可以从教师那里感受到一种受到信赖、鼓舞和激励的内心情感体验,并努力把这种教诲转化为勤奋学习。因此,教师要重视情感投资,把建立良好的师生关系,激发学生的学习兴趣
重庆高考数学考点分析范文 第六篇
高考数学解题思想一:函数与方程思想
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。利用转化思想我们还可进行函数与方程间的相互转化。
高考数学解题思想二:数形结合思想
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
高考数学解题思想三:特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。
高考数学解题思想四:极限思想解题步骤
极限思想解决问题的一般步骤为:(1)对于所求的未知量,先设法构思一个与它有关的变量;(2)确认这变量通过无限过程的结果就是所求的未知量;(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
高考数学解题思想五:分类讨论思想
我们常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。在分类讨论解题时,要做到标准统一,不重不漏。
重庆高考数学考点分析范文 第七篇
各位老师:
大家好!我叫周婷婷,来自湖南科技大学。我说课的题目是《算法的概念》,内容选自于新课程人教A版必修3第一章第一节,课时安排为两个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教学方法分析、学情分析、教学过程分析等五大方面来阐述我对这节课的分析和设计:
一、教材分析
1.教材所处的地位和作用
现代社会是一个信息技术发展很快的社会,算法进入高中数学正是反映了时代的需要,它是当今社会必备的基础知识,算法的学习是使用计算机处理问题前的一个必要的步骤,它可以让学生们知道如何利用现代技术解决问题。又由于算法的具体实现上可以和信息技术相结合。因此,算法的学习十分有利于提高学生的逻辑思维能力,培养学生的理性精神和实践能力。
2.教学的重点和难点
重点:初步理解算法的定义,体会算法思想,能够用自然语言描述算法难点:把自然语言转化为算法语言。
二、教学目标分析
1.知识目标:了解算法的含义,体会算法的思想;能够用自然语言描述解决具体问题的算法;理解正确的算法应满足的要求。
2.能力目标:让学生感悟人们认识事物的一般规律:由具体到抽象,再有抽象到具体,培养学生的观察能力,表达能力和逻辑思维能力。
3.情感目标:对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一有力工具,进一步提高探索、认识世界的能力。
三、教学方法分析
采用xxx问题探究式xxx教学法,以多媒体为辅助手段,让学生主动发现问题、分析问题、解决问题,培养学生的探究论证、逻辑思维能力。
四、学情分析
算法这部分的使用性很强,与日常生活联系紧密,虽然是新引入的章节,但很容易激发学生的学习兴趣。在教师的引导下,通过多媒体辅助教学,学生比较容易掌握本节课的内容。
五、教学过程分析
1.创设情景:我首先向学生们展示章头图,介绍图中的后景是取自宋朝数学家朱世杰的数学作品《四元玉鉴》,告诉学生们章头图正是体现了中国古代数学与现代计算机科学的联系,它们的基础都是xxx算法xxx.
「设计意图」是为了充分挖掘章头图的教学价值,体现
1)算法概念的由来;
2)我们将要学习的算法与计算机有关;
3)展示中国古代数学的成就;
4)激发学生学习算法的兴趣。从而顺其自然的过渡到本节课要讨论的话题。(约4分钟)
2.引入新课:在这一环节我首先和学生们一起回顾如何解二元一次方程组,并引导他们归纳二元一次方程组的求解步骤,从而让学生经历算法分析的基本过程,培养思维的条理性,引导学生关注更具一般性解法,形成解法向算法过渡的准备,为建立算法概念打下基础。紧接着在此基础上进一步复习回顾解一般的二元一次方程组的步骤,引导学生分析解题过程的结构,写出求一般的二元一次方程组的解的算法,并把它编成程序,让学生输入数据,体验计算机直接给出方程组的解。目的是让学生明白算法是用来解决某一类问题的,从而提高学生对算法的普遍适用性的认识,为建立算法的概念做好铺垫。
之后,我就向学生们提出问题:到底什么是算法?如何用语言来表达算法的涵义?这里让学生们根据刚刚的探索交流、思考并回答,然后老师进行归纳,得出算法的基本概念,并帮助学生认识算法的概念,指出有穷性,确定性,可行性。这样可以让学生们真正参与到算法概念的形成过程中来,体会算法思想。(约8分钟)
3.例题讲解:在这一环节我安排了两道例题,以帮助学生们能更好地理解算法的基本概念,并应用到实际解决问题中去,而不只是单纯的对数学思想的领悟。
这两道例题均选自课本的例1和例2.
例1是让我们设定一个程序以判断一个数是否为质数。质数是我们之前已经学习的内容,为了能更顺利地完成解题过程,这里有必要引导学生们回顾一下质数应满足的条件,然后再根据这个来探索解题步骤。通过例1让学生认识到求解结构中存在xxx重复xxx.为导出一般问题的算法创造条件,也为学习算法的自然语言表示提供前提。告诉学生们本算法就是用自然语言的形式描述的。并且设计算法一定要做到以下要求:
(1)写出的算法必须能解决一类问题,并且能够重复使用。
(2)要使算法尽量简单、步骤尽量少。
(3)要保证算法正确,且计算机能够执行。
在例1的基础上我们继续研究例2,例2是要求我们设计一个利用二分法来求解方程的近似根的程序。我们首先要对算法作分析,回顾用二分法求解方程近似根的过程,然后设计出解题步骤。二分法是算法中的经典问题,具有明显的顺序和可操作的特点。因此通过例2可以让学生进一步了解算法的逻辑结构,领会算法的思想,体会算法的的特征。同时也可以巩固用自然语言描述算法,提高用自然语言描述算法的表达水平。另外,借助例题加强学生对算法概念的理解,体会算法具有程序性、有限性、构造性、精确性、指向性的特点,算法以问题为载体,泛泛而谈没有意义。(约20分钟)
4.课堂小结:
(1)算法的概念和算法的基本特征
(2)算法的描述方法,算法可以用自然语言描述。
(3)能利用算法的思想和方法解决实际问题,并能写出一此简单问题的算法课堂小结是一堂课内容的概括和总结,有利于学生把握本节课的重点,对所学知识有一个系统整体的认识。(约6分钟)
5.布置作业:课本练习1、2题
课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。对作业实施分层设置,分必做和选做,利于拓展学生的自主发展的空间。
重庆高考数学考点分析范文 第八篇
任一x=A,x=B,记做AB
AB,BAA=B
AB={x|x=A,且x=B}
AB={x|x=A,或x=B}
Card(AB)=card(A)+card(B)—card(AB)
(1)命题
原命题若p则q
逆命题若q则p
否命题若p则q
逆否命题若q,则p
(2)AB,A是B成立的充分条件
BA,A是B成立的必要条件
AB,A是B成立的充要条件
1、集合元素具有
①确定性;
②互异性;
③无序性
2、集合表示方法
①列举法;
②描述法;
③韦恩图;
④数轴法
(3)集合的运算
①A∩(B∪C)=(A∩B)∪(A∩C)
②Cu(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
(4)集合的性质
n元集合的字集数:2n
真子集数:2n—1;
非空真子集数:2n—2
上一篇:自己的营销小故事范文12篇
下一篇:返回列表