欢迎访问AA范文大全网!

最新六年级上册数学复习知识点整理

时光漫步 分享 时间: 加入收藏 我要投稿 点赞

本文共计15258个文字,预计阅读时间需要62分钟。

还在为没有系统的上册数学复习知识点而发愁吗?在日常过程学习中,说起知识点,应该没有人不熟悉吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。下面是小编给大家整理的最新六年级上册数学复习知识点整理,仅供参考希望能帮助到大家。

最新六年级上册数学复习知识点整理篇1

一、扇形统计图的意义:

用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。

也就是各部分数量占总数的百分比(因此也叫百分比图)。

二、常用统计图的优点:

1、条形统计图:可以清楚的看出各种数量的多少。

2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。

3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。

三、扇形的面积大小:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。)

四统计图:复式折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来,以折线的上升或下降来表示统计数量增减变化。折线统计图不但可以表示出数量的多少,而且还能够清楚的表示出数量增减变化的情况。

小学数学图形的变换知识点

1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。

3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。

六年级数学必考难题整理

1圆柱侧面积

1.王师傅用面积是9.42平方分米的铁皮做成了一个长2分米的烟囱(接头处忽略不计)则,这个烟囱的横截面的直径是多少?

解:横截面的周长:9.42/2=4.71(分米)

横截面的直径:4.71/3.14=1.5(分米)

答:这个烟囱的横截面的直径是1.5分米。

2计算整除

2.只修改970405的某一个数字,就可使修改后的六位数能被225整除,修改后的六位数是_____。

解:逆向思考:因为225=25×9,且25和9互质,所以,只要修改后的数能分别被25和9整除,这个数就能被225整除。我们来分别考察能被25和9整除的情形。由能被25整除的数的特征(末两位数能被25整除)知,修改后的六位数的末两位数可能是25,或75。再据能被9整除的数的特征(各位上的数字之和能被9整除)检验,得9+7+0+4+5=25,25+2=27,25+7=32。故知,修改后的六位数是970425。

3路程问题

3.车队向灾区运送一批救灾物资,去时每小时行80km,5小时到达灾区。回来时每小时行100km,这支车队要多长时间能够返回出发地?

解:80×5÷100=400÷100=4(小时)

答:这支车队要四个小时能够返回出发地。

最新六年级上册数学复习知识点整理篇2

一、百分数的意义和写法

(一)、百分数的意义:表示一个数是另一个数的百分之几。百分数是指的两个数的比,因此也叫百分率或百分比。

(二)、百分数和分数的主要联系与区别:

联系:都可以表示两个量的倍比关系。

区别:①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;

分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位。

②、百分数的分子可以是整数,也可以是小数;

分数的分子不能是小数,只能是除0以外的自然数。

3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。

二、百分数和分数、小数的互化

(一)百分数与小数的互化:

1、小数化成百分数:把小数点向右移动两位(数位不够用0补足),同时在后面添上百分号。

2.百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。

(二)百分数的和分数的互化

1、百分数化成分数:先把百分数改写成分母是100的分数,能约分要约成最简分数。

2、分数化成百分数:

①用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。

②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。(建议用这种方法)

(三)常见分数小数百分数之间的互化;

三、用百分数解决问题

(一)一般应用题

1、常见的百分率的计算方法:

一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。

2、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。

例如:例如:男生有20人,女生有15人,女生人数占男生人数的百分之几。

列式是:15÷20=15/20=75%

3、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题,数量关系式和分数乘法解决问题中的关系式相同:

(1)百分率前是“的”:单位“1”的量×百分率=百分率对应量

(2百分率前是“多或少”的数量关系:

单位“1”的量×(1±百分率)=百分率对应量

4、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。方法与分数的方法相同。

解法:(1)方程:根据数量关系式设未知量为X,用方程解答。

(2)算术(用除法):百分率对应量÷对应百分率=单位“1”的量

5、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;

百分率前是“多或少”的关系式:

(比少):具体量÷ (1-百分率)=单位“1”的量;

例如:大米有50千克,比面粉树少50%,面粉有多少千克。

列式是:50÷(1-50%)

(比多):具体量÷ (1+百分率)=单位“1”的量

例如:工人做110个零件,比原计划多做了10%,原计划做多少个?

列式是:110÷(1+10%)

6、求一个数比另一个数多百分之几的方法:方法与分数的方法相同。

用两个数的相差量÷单位“1”的量=百分之几

即①求一个数比另一个数多百分之几:用(大数–小数) ÷另一个数(比那个数就除以那个数),结果写为百分数形式。

甲比乙多几分之几的问题,方法A,(甲-乙)÷乙(建议用)

方法B,甲÷乙-100%

例如:老师计划改40本作业,实际改了50本,实际比计划多改了百分之几?

列式是:(50-40)÷40=0.25=25%

②求一个数比另一个数少几分之几:用(大数–小数) ÷另一个数(比那个数就除以那个数),结果写为百分数形式。

乙比甲少几分之几的问题,方法A,(甲-乙)÷甲(建议用)

方法B,100%-乙÷甲

例如:张三家用了100度电,李四家用了90度电,李四家比张三家少用百分之几?

(100-90)÷100=0.1=10%

说明:多百分之几不等于少百分之几,因为单位一不同。

7、如果甲比乙多或少a%,求乙比甲少或多百分之几,用a%÷(1±a%)

8、求价格先降a%又上升a%后的价格:1×(1-a%)×(1+a%)(假设原来的价格为“1”。求变化幅度(求降价后的价格是涨价后价格的百分之几)用1-降价后又上升的百分率。

小学数学四大领域主要内容

数与代数:的认识,数的表示,数的大小,数的运算,数量的估计;

图形与几何:空间与平面的基本图形,图形的性质和分类;图形的平移、旋转、轴对称;

统计与概率:收集、整理和描述数据,处理数据;

实践与综合应用:以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。

数学分数加减法知识点

一、分数的意义

1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。

二、分数与除法的关系,真分数和假分数

1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。

2、真分数和假分数:

①分子比分母小的分数叫做真分数,真分数小于1。

②分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。

③由整数部分和分数部分组成的分数叫做带分数。

3、假分数与带分数的互化:

①把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。

②把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。

三、分数的基本质

分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。

四、分数的大小比较

①同分母分数,分子大的分数就大,分子小的分数就小;

②同分子分数,分母大的分数反而小,分母小的分数反而大。

③异分母分数,先化成同分母分数(分数单位相同),再进行比较。(依据分数的基本性质进行变化)

五、约分(最简分数)

1、最简分数:分子和分母只有公因数1的分数叫做最简分数。

2、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。 (并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止)

注意:分数加减法中,计算结果能约分的,一般要约分成最简分数。

六、分数和小数的互化:

1、小数化分数:将小数化成分母是10、100、1000…的分数,能约分的要约分。具体是:看有几位小数,就在1后边写几个0做分母,把小数点去掉的部分做分子,能约分的要约分。

2、分数化小数:用分子除以分母,除不尽的按要求保留几位小数。(一般保留三位小数。)

如果分母只含有2或5的质因数,这个分数能化成有限小数。如果含有2或5以外的质因数,这个分数就不能化成有限小数。

3、分数和小数比较大小:一般把分数变成小数后比较更简便。

七、分数的加法和减法

1、分数方程的计算方法与整数方程的计算方法一致,在计算过程中要注意统一分数单位。

2、分数加减混和运算的运算顺序和整数加减混和运算的运算顺序相同。在计算过程,整数的运算律对分数同样适用。

3、同分母分数加、减法:同分母分数相加、减,分母不变,只把分子相加减,计算的结果,能约分的要约成最简分数。

4、异分母分数加、减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算;或者先根据需要进行部分通分。根据算式特点来选择方法。

最新六年级上册数学复习知识点整理篇3

一、与圆有关的概念

1、圆是由一条曲线围成的平面图形。而长方形、梯形等都是由几条线段围成的平面图形把圆对折,再对折(对折2次)就能找到圆心。因此,圆是轴对称图形,直径所在的直线是圆的对称轴,圆有无数条对称轴。半圆只有1条对称轴。常见的轴对称图形:等腰三角形(1条)、等边三角形(3条)、等腰梯形(1条)、长方形(2条)、正方形(4条)、圆(无数条)、半圆(1条)。

2、车轮为什么是圆的?答:因为圆心到圆上各点的距离相等,所以圆在滚动时,圆心在一条直线上运动,这样的车轮运行才稳定。

3、圆内最长的线段是直径,圆规两脚之间的距离是半径。

4、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r =d÷2)

5、圆心决定圆的位置,半径决定圆的大小。

6、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。用字母π表示。π是一个无限不循环小数。π=3.141592653……

我们在计算时,一般保留两位小数,取它的近似值3.14。π>3.14

7、周长相等的平面图形中,圆的面积最大;面积相等的平面图形中,圆的周长最短。

8、几个直径和为n的圆的周长=直径为n的圆的周长

几个直径和为n的圆的面积<直径为n的圆的周长

(如图)略

9.大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,面积的倍数=半径倍数的平方(即半径扩大n倍,直径扩大n倍,周长扩大n倍,面积扩大n×n倍)

10、常用的3.14的倍数:

3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7 0

3.14×6=18.84 3.14×7=21.98

3.14×8=25.12 3.14×9=28.26 3.14×16=50.24 3.14×25=78.50

3.14×36=113.04 3.14×49=153.86 3.14×64=200.96 3.14×81=254.34

11、常用的平方数:

11?=121 12?=144 13?=169 14?=196 15?=225 16?=256 17?=289

18?=324 19?=361 20?=400

二、圆的周长公式

1、已知圆的半径(r),求圆的周长(c):C=2πr

2、已知圆的直径(d),求圆的周长(c)C=πd

3、已知圆的周长,求圆的半径:r=C÷π÷2

4、已知圆的周长,求圆的直径:d=C÷π

5、求半圆的弧长,半圆的弧长等于圆周长的'一半:半圆的弧长=πr或者半圆的弧长=πd÷2

6、求半圆的周长,半圆的周长等于圆周长的一半加一条直径:C半圆= πr+2r

C半圆= πd÷2+d

7、车轮滚动一周前进的路程就是车轮的周长。

每分前进米数(速度)=车轮的周长×每分的转数

8、求阴影部分的周长:总体思路,记住一点,周长的概念,所有围成这个图形的线段或曲线的长度之和。所以求阴影部分的周长时,首先把阴影部分这个图形的轮廓画出来,找出这个图形都由哪些线段、哪些曲线组合起来的。再分别求出这些线段、曲线的长度,最后相加。比如,这个图形:

首先,我找出阴影部分在哪,找出阴影部分后发现,这个阴影部分的周长是由两个圆弧、两个条线段组成。那么这两个圆弧合起来正好是一个圆的周长,所以这个阴影部分的周长=10×2×3.14+10×2+10×2

例题:

1、小红沿直径6.4米的圆形花圃边走一周,需要走多少米?(走一周的路程就是圆的周长)

2、一捆电线绕了9圈,每圈直径都是48厘米,这捆电线长多少米?(圆的周长就是绕一圆的长度,有9圈)

三、圆面积公式

圆所占平面的大小叫圆的面积。把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;

1.已知圆的半径,求圆的面积S=πr?

2.已知圆的周长,求圆的面积S=π(C÷π÷2)?

3.半圆的面积,即整圆面积的一半:半圆面积=πr?÷2

4.求圆环的面积一般是用外圆的面积减去内圆的面积,还可以利用乘法分配律进行简便计算。

S圆环=S外圆—S内圆=πR?-πr?=π(R?-r?)

5、正方形里最大的圆。两者联系:边长=直径;圆的面积=78.5%正方形的面积

画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。

6、长方形里最大的圆。两者联系:宽=直径

画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心,以宽为直径画圆。

例:在长10分米,宽8分米的长方形中画一个最大的圆,圆的周长和面积各是多少?

7、在圆内画一个最大的正方形这个最大的正方形的面积=直径×半径

8、在半圆内画一个最大的三角形,三角形的底就是圆的直径,三角形的高就是圆的关径。三角形的面积=直径直径×半径÷2

二、分数混合运算

(一)分数混合运算

1、分数混合运算顺序与整数混合运算顺序相同,没有括号的先算(乘除),再算(加减);有括号的先算(括号里面的),再算(括号外面的)。

2、整数的运算律在分数运算中同样适用。

3、加法交换律:a+b=b+a

4、加法结合律:a+b+c=a+(b+c)

5、乘法交换律:a×b=b×a

6、乘法结合律:a×b×c=a×(b×c)

7、乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c

8、减法定律:减法的性质a-b-c=a-(b+c)或a-(b+c) =a-b-c连减等于一次性减除

9、除法的性质:a÷b÷c=a÷(b×c)或a÷(b×c)= a÷b÷c

连除等于除以两个除数的积

三、观察物体

1.观察的范围将眼睛、障碍物的最高处这两点连成线,并将这条线延长,线的一侧没被障碍物挡住的部分就是观察到的范围。站的越高,观察的范围越大。离观察物越近,观察的范围越小。

2.天安门广场:观察角度不同,看到物体的形状也不同。

四、分数及百分数的应用

1、表示一个数是另一个数的百分之几的数叫作(百分数),也叫作(百分率)或(百分比)。

2、百分率一般是指(部分)占(整体)的百分之几。

3、小数化百分数时,把小数点向(右)移动(两)位,后面添上百分号;分数化成百分数,可以先化成小数,再化成百分数。

4、百分数化成小数时,把(百分号)先去掉,再把小数点向(左)移动(两)位;百分数化成分数,先写成分母是(100)的分数形式,再化成(最简)分数。

5、求一个数是另一个数的几分之几(或百分之几)?

“是”字前面的数÷“是”字后面的数

6、求一个数比另一个数多(或少)几分之几(或百分之几)?

(大数-小数)÷“比”字后面的数

7、常见的小数、百分比和分数的互化。略

8、应纳税额。计算方法:营业额×税率

9、利息=本金×利率×时间,本金=利息÷利率÷时间,利率=利息÷本金÷时间,时间=利息÷本金÷利率

10、税后利息计算方法:利息-利息×税率

11、到期后可以取出的钱数计算方法:本金+税后利息

12、生活中的百分率:

出勤率、缺勤率、发芽率、优秀率、及格率、合格率、命中率、近视率、出粉率、出米率、出油率、入学率、升学率、森林覆盖率、绿化覆盖率、收视率、体育达标率、疫苗接种率、含糖率、含盐率、正确率、错误率

达标率=达标学生人数÷学生总人数发芽率=发芽种子数÷种子总数

出勤率=出勤人数÷学生总人数合格率=合格的产品数÷产品总数

出米率=米的重量÷稻谷的重量成活率=成活的数量÷种植总数

出粉率=粉的重量÷小麦的重量出油率=油的重量÷花生的重量

命中率=命中的次数÷投篮总数含盐率=盐的重量÷盐水的重量

有关分数百分数应用题解题技巧与方法指导:

一、解分数,百分数应用题

二、找单位1的方法

1、部分数和总数

在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如我国人口约占世界人口的1/5,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“1”。

再如,食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1”。

解答这类分数应用题,只要找准总数和部分数,确定单位“1”就很容易了。

2、两种数量比较

分数应用题中,两种数量相比的关键句非常多。有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多1/2。就是以女生人数为标准(单位“1”),男生比女生多的人数作为比较量。在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。这个“占”,“相当于”,“是”后面的数量——谁就是单位“1”。

例如,一个长方形的宽是长的5/12。在这关键句中,很明显是以长作为标准,宽和长相比较,也就是说长是单位“1”。又如,今年的产量相当于去年的4/3倍。那么相当于后面的去年的产量就是标准量,也就是单位“1”。

3、原数量与现数量

有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。这类分数应用题的单位“1”比较难找。

例如,水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12。象这样的水和冰两种数量到底谁作为单位“1”?两句关键句的单位“1”是不是相同?

用上面讲过的两种方法不容易找出单位“1”。其实我们只要看,原来的数量是谁?这个原来的数量就是单位“1”!比如水结成冰,原来的数量就是水,那么水就是单位“1”。冰融化成水,原来的数量是冰,所以冰的体积就是单位“1”。

三、如何根据分率句来写等量关系

四、百分数题型分类及解题方法

百分数应用题三种类型

第一大类求分率用除法:求一个数是另一个数的百分之几

1.直接求一个数是另一个数的百分之几一个数÷另一个数

2.求一个数比另一个数多百分之几多的部分÷单位1

3.求一个数比另一个数少百分之几少的部分÷单位1

例:(1)男生有25人,女生有20人,女生是男生的百分之几?

(2)男生有25人,女生有20人,男生比女生多百分之几?

(3)男生有25人,女生有20人,女生比男生少百分之几?

第二大类单位1已知用乘法:求一个数的百分之几是多少

1.直接求一个数的百分之几是多少单位1×分率

2.求比一个数多百分之几的数是多少

单位1×(1+分率)3.求比一个数少百分之几的数是多少

单位1×(1-分率)

例:(1)男生有25人,女生是男生的80% ,女生有多少人?

(2)女生有20人,男生比女生多25%,女生有多少人?

(3)男生有25人,女生比男生少20%,女生有多少人?

第三大类单位1未知用除法:已知一个数的百分之几是多少,求这个数。

1.已知一个数的百分之几是多少,求这个数。

已知量÷分率=单位1

2.已知比一个数多百分之几的数是多少,求这个数

已知量÷(1+多的分率)=单位1

3.已知比一个数少百分之几的数是多少,求这个数

已知量÷(1-少的分率)=单位1

例:(1)女生有25人,是男生的80%,男生有多少人?

(2)男生有25人,比女生多25%,女生有多少人?

(3)女生有20人,比男生少20%,男生有多少人?

四、比的认识

(一)、比的意义

1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。

例:路程÷速度=时间。

4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

5、根据分数与除法的关系,两个数的比也可以写成分数形式。

6、比和除法、分数的联系:略

7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

8、根据比与除法、分数的关系,可以理解比的后项不能为0。体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

(二)、比的基本性质

1、根据比、除法、分数的关系:

商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

3、根据比的基本性质,可以把比化成最简单的整数比。

4、化简比:略

5、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

6、路程一定,速度比和时间比成反比。

(如:路程相同,速度比是4:5,时间比则为5:4)

工作总量一定,工作效率和工作时间成反比。

(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)

(三)和比的应用题有关的概念

1、求每份数的方法和÷分数和=每份数相差数÷相差份数=每份数部分数÷对应份数=每份数

2、图形求比的常见公式长方体:(长+宽+高)的和=棱长和÷4长方形:(长+宽)的和=周长÷2

3、相遇问题速度和=路程÷相遇时间

(四)比的应用

★知识体系

1、在工农业生产和生活中,常常需要把一个数量按照一定的比来进行分配。这种分配方法通常叫按比例分配。

按比例分配应用题分为三种情况,看下面的三个例子:

例(1)一年级与二年级共有学生130人,一年级与二年级人数比是5︰8,两个年级各有学生多少人?

例(2)二年级比一年级多30人,一年级与二年级人数比是5︰8,两个年级各有多少人?例(3)二年级有80人,一年级与二年级人数比是5︰8,一年级有多少人?

五、数据处理:略

六、常用的数量关系

1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数

2、速度×时间=路程路程÷速度=时间路程÷时间=速度

3、单价×数量=总价总价÷单价=数量总价÷数量=单价

4、工作效率×工作时间=工作总量

工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

5、加数+加数=和和-一个加数=另一个加数

6、被减数-减数=差被减数-差=减数差+减数=被减数

7、因数×因数=积积÷一个因数=另一个因数

8、被除数÷除数=商被除数÷商=除数商×除数=被除数

最新六年级上册数学复习知识点整理篇4

一、填空(16分)

1、圆的位置是由(__)确定的,圆的大小决定于(__)的长短。

2、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。

3、在同一个圆内可以画(__)条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是(__)厘米。

4、在长6厘米,宽4厘米的长方形内画一个的圆,这个圆的周长是(__),面积是(__)。

5、一个圆环,外圆直径是6分米,圆环宽1分米,圆环的面积是(__)。

6、甲圆直径长8厘米,是乙圆直径的40%。乙圆的周长是(__)。

7、大圆的半径等于小圆直径,则大圆面积是小圆面积的(__)倍,小圆周长是大圆周长的(__)。

8、在一张长32厘米,宽16厘米的长方形内画半径是4厘米的圆,这样的圆最多能画(__)个,这些圆的面积和是(__)。

二、判断题。(8分)

1、圆的周长是它的直径的π倍。(__)

2、圆的直径扩大4倍,圆的面积也扩大4倍。(__)

3、半径为1厘米的圆的周长是3.14厘米。(__)

4、一个圆的周长是12.56厘米,面积是12.56平方厘米。(__)

5、圆的半径由6分米增加到9分米,圆的面积增加了45平方分米。(__)

6、圆内最长的线段是直径。(__)

7、圆是轴对称图形,它有无数条对称轴。(__)

8、半个圆的周长就是圆周长的一半。(__)

三、选择(9分)

1、3.14(__)π

A、 = B、 > C <、 D、能确定

2、当周长相等时,面积的是(__)

A、平行四边形B、长方形C、正方形D、圆

最新六年级上册数学复习知识点整理篇5

1、理解比例的意义和基本性质,会解比例。

2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

4、解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

7、比例的意义:表示两个比相等的式子叫做比例。如:2:1=6:

8、组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。

9、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。

10、解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。

11、正比例和反比例:

(1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示y/x=k(一定)

例如:

①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。

②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。

③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。

④y=5x,y和x成正比例,因为:y÷x=5(一定)。

⑤每天看的页数一定,总页数和天数成正比例,因为:总页数÷天数=每天看页数(一定)。

(2)成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。用字母表示x×y=k(一定)

例如:

①路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。

②总价一定,单价和数量成反比例,因为:单价×数量=总价(一定)。

③长方形面积一定,它的长和宽成反比例,因为:长×宽=长方形的面积(一定)。

④40÷x=y,x和y成反比例,因为:x×y=40(一定)。

⑤煤的总量一定,每天的烧煤量和烧的天数成反比例,因为:每天烧煤量×天数=煤的总量(一定)。

12、图上距离:实际距离=比例尺;

例如:图上距离2cm,实际距离4km,则比例尺为2cm:4km,最后求得比例尺是1:200000。

13、实际距离=图上距离÷比例尺;

例如:已知图上距离2cm和比例尺,则实际距离为:2÷1/200000=400000cm=4km。

14、图上距离=实际距离×比例尺;

例如:已知实际距离4km和比例尺1:200000,则图上距离为:400000×1/200000=2(cm)

1、根据方向和距离可以确定物体在平面图上的位置。

2、在平面图上标出物体位置的方法:

先用量角器确定方向,再以选定的单位长度为基准用直尺确定图上距离,最后找出物体的具体位置,并标上名称。

3、描述路线图时,要先按行走路线确定每一个参照点,然后以每一个参照点建立方向标,描述到下一个目标所行走的方向和路程,即每一步都要说清是从哪儿走,向什么方向走了多远到哪儿。

4、绘制路线图的方法:

(1)确定方向标和单位长度。

(2)确定起点的位置。

(3)根据描述,从起点出发,找好方向和距离,一段一段地画。除第一段(以起点为参照点)外,其余每一段都要以前一段的终点为参照点。

(4)以谁为参照点,就以谁为中心画出“十”字方向标,然后判断下一地点的方向和距离。

最新六年级上册数学复习知识点整理篇6

一、分数乘法

(一)分数乘法的意义和计算法则

1、分数乘整数的意义

2/11×3 表示: 求3个2/11是多少? 求2/11的3倍是多少?

2、分数乘整数的计算方法

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(能约分的要先约分再乘)

3、一个数乘分数的意义:就是求这个数的几分之几是多少。3/5×1/4表示:求3/5的1/4是多少。

4、分数乘分数的的计算方法

分数乘分数,用分子乘分子,分母乘分母。(能约分的要先约分再乘)

(二)求一个数的几分之几是多少的问题

1、找单位“1”的方法

(1)是谁的几分之几,就把谁看作单位“1”。

(2)一般把“比”字、“是”字、“占”字、“相当于”后面的量看作单位“1”。

注意: 找单位“1”在分率句里找,有分率的句子称为分率句。

分率不带单位,具体数量带有单位。

2、求一个数的几倍、几分之几是多少,用乘法计算。

15的3/5是多少? 15×3/5=9

3、已知单位“1”用乘法计算

单位“1”×分率=分率的对应量

注意:(1) 乘上什么样的分率就等于什么样的数量。

(2) 乘上谁占的分率就等于谁的数量。

(3) 是谁的几分之几,就用谁乘上几分之几。

4、已知A比B多(或少)几分之几,求A的解题方法

5、积与因数的大小关系

大于1的数,积大于A。

A(0除外)乘上

小于1的数,积小于A。

二、位置与方向

1、确定物体的位置:(上北下南,左西右东)

(1)北偏东30°就是从北向东移,夹角靠北。

(2)东偏北30°就是从东向北移,夹角靠东。

2、物体位置的相对性

(1)两地的位置关系是相对的,方向刚好相反,距离是一样的。

例如:少年宫在学校南偏东35°的方向上,相距250米,(在学校是以学校为观测点)

南对北 东对西

则学校在少年宫北偏西35°的方向上,相距250米。(在少年宫是以少年宫为观测点)

三、分数除法

(一)倒数的认识

1、倒数的意义

乘积是1的两个数互为倒数。 (注意:不能单独说某个数是倒数。)

2、求倒数的方法

求一个分数的倒数(0除外),只要把这个分数的分子、分母调换位置。

是带分数的先化成假分数

是小数的先化成分数

整数的倒数:整数是几,它的倒数就是几分之一。

3、 1的倒数是1,0没有倒数。

(三)分数除法

1、分数除法的意义

3/10÷1/10表示:已知两个因数的积是3/10,与其中一个因数是1/10,求另一个因数是多少。

2、分数除法的计算方法

除以一个不等于0的数,等于乘这个数的倒数。

3、被除数与商的大小关系

当除数小于1时,商就大于被除数。(0除外)

当除数大于1时,商就小于被除数。(0除外)

4、分数四则混合运算的运算顺序

(1) 只有“+、-”或只有“×、÷”,从左往右计算。

(2) 有“+、-”,也有“×、÷”,先乘除后加减。

(3) 有( )、[ ]的,先算( )里面的,再算[ ]里面的。

(一)已知一个数的几倍、几分之几是多少,求这个数。用除法计算。

1、已知一个数的几分之几是多少,求这个数的问题

例:甲数是15,甲数是乙数的3/5。乙数是多少? 15÷3/5=25

2、求一个数是另一个数的几倍、几分之几,用除法计算。

方法是:用“是”字前面的数÷“是”字后面的数。

例:1、15是5的几倍? 15÷5=3

2、20是25的几分之几? 20÷25=4/5

3、求一个数比另一个数多(或少)几分之几的解题方法是:

用相差量÷问题“比”字后面的量

例:(1)甲数是25,乙数是20。甲数比乙数多几分之几? (25-20)÷20=1/4

(2) 甲数是25,乙数是20。乙数比甲数少几分之几? (25-20)÷25=1/5

4、求单位“1”用除法计算。

具体量(对应量)÷对应分率=单位“1”

什么样的数量就对应什么样的分率。

什么样的分率就对应什么样的数量。

5、求平均数问题: 总量÷总份数=每份数

注意:求平均每什么就除以什么数。(求每天就除以天数;求每人就除以人数;求每千克就除以千克数;求每米就除以米数……)

6、已知A比B多(或少)几分之几,求B的解题方法:

A÷(1+/-几分之几)=B

7、已知单位“1”用乘法,求单位“1”用除法;

分率比多的就1+,比少的就1-。

8、工程问题

把工作总量看作“1”,工作效率就是1/工作时间。

工作时间=工作量 ÷ 工作效率

要做的工作量 由谁做就除以谁的工作效率

1人的效率=两人的效率和-另1人的效率

最新六年级上册数学复习知识点整理篇7

小数

1、小数的意义:把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

2、一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数是整数部分,小数点右边的数叫做小数部分。

3、在小数里,每相邻两个计数单位之间的进率都是10。小数部分的分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

分数

1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

2、把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

3、分数的分类

真分数:分子比分母小的分数叫做真分数。真分数小于1。假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

4、约分:把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。

5、分子分母是互质数的分数叫做最简分数。

6、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

约分和通分

1、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

2、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

数学0的性质

1、0既不是正数也不是负数,而是介于—1和+1之间的整数。

2、0的相反数是0,即—0=0。

3、0的绝对值是其本身。

4、0乘任何实数都等于0,除以任何非零实数都等于0,任何实数加上0等于其本身。

5、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。

6、0的正数次方等于0,0的负数次方无意义,因为0没有倒数。

7、除0外,任何数的的0次方等于1。

8、0也不能做除数、分数的分母、比的后项。

9、0的阶乘等于1。

小学数学运算定律和性质知识点

加法:

加法交换律:a+b=b+a

加法结合律:(a+b)+c=a+(b+c)

乘法:乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)

变式:(a—b)×c=a×c—b×c或a×c—b×c=(a—b)×c

减法:减法性质:a—b—c=a—(b+c)

除法:除法性质:a÷b÷c=a÷(b×c)

最新六年级上册数学复习知识点整理篇8

运算法则

1.整数加法计算法则:

相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。

2.整数减法计算法则:

相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。

3.整数乘法计算法则:

先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。

4.整数除法计算法则:

先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。

5.小数乘法法则:

先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。

6.除数是整数的小数除法计算法则:

先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。

7.除数是小数的除法计算法则:

先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。

8.同分母分数加减法计算方法:

同分母分数相加减,只把分子相加减,分母不变。

9.异分母分数加减法计算方法:

先通分,然后按照同分母分数加减法的的法则进行计算。

10.带分数加减法的计算方法:整数部分和分数部分分别相加减,再把所得的数合并起来。

小数乘除法的意义及法则

1.小数乘法意义:

小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。例:3.5×4表示4个3.5相加是多少。或表示3.5的4倍是多少。

一个数乘小数的意义与整数乘法的意义不同,是求这个数的十分之几,百分之几,千分之几……。例:25×0.17,表示25的百分之十七是多少。

2.小数除法的意义

小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算。例:表示已知两个因数的积是0.75和其中一个因数0.5,求另一个因数是多少。或表示0.75是0.5的多少倍。

小数乘除法的计算法则

1.小数乘法法则:

(1)先按照整数乘法的法则计算;

(2)看因数中一共有几位小数,就从积的右边数出几位,点上小数点。

2.小数除法法则:

(1)先按照整数除法的法则去除;

(2)商的小数点和被除数的小数点对齐;

(3)除到被除数的末尾仍有余数,就在余数后面添0再继续除。

代数初步知识

一、用字母表示数

1用字母表示数的意义和作用

2用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式

(1)常见的数量关系

路程用s表示,速度v用表示,时间用t表示,三者之间的关系:

s=vt v=s/t t=s/v

总价用a表示,单价用b表示,数量用c表示,三者之间的关系:

a=bc b=a/c c=a/b

(2)运算定律和性质

加法交换律:a+b=b+a

加法结合律:(a+b)+c=a+(b+c)

乘法交换律:ab=ba

乘法结合律:(ab)c=a(bc)

乘法分配律:(a+b)c=ac+bc

减法的性质:a-(b+c) =a-b-c

(3)用字母表示几何形体的公式

长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。 c=2(a+b) s=ab

正方形的边长a用表示,周长用c表示,面积用s表示。 c=4a s=a2

平行四边形的底a用表示,高用h表示,面积用s表示。 s=ah

三角形的底用a表示,高用h表示,面积用s表示。

s=ah/2

梯形的上底用a表示,下底b用表示,高用h表示,s=(a+b)h/2

小学数学梯形性质

1.连结梯形对角线中点的线段等于两底的一半。

2.梯形ABCD中,AB∥CD,M为BC中点,MN⊥AD于N,则S梯形ABCD=MN·AD=2S△AND。

3.梯形在同一底上的两角分别是40°和70°,则另一底与腰的和等于这个底的长。

4.梯形同侧内角平分线交于另一腰中点,则上下底的和等于这一腰的长。

5.?梯形上、下底中点的连线小于两腰和的一半。

6.同一底上的两底角和为90°的梯形,上下底中点的连线等于上下底中点的一半。

小学数学数的互化知识点

(1)小数化成分数

原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

(2)分数化成小数

用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

(3)化有限小数

一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。

(4)小数化成百分数

只要把小数点向右移动两位,同时在后面添上百分号。

(5)百分数化成小数

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

(6)分数化成百分数

通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

(7)百分数化成小数

先把百分数改写成分数,能约分的要约成最简分数。

221381
领取福利

微信扫码领取福利

微信扫码分享