本文共计79709个文字,预计阅读时间需要319分钟。
市政隧道论文范文高中 第1篇
关键词:道路桥梁工程实例
一、采用成熟的先进技术
西方传媒和学术著作都称欧洲隧道为人类工程史上的一个伟业。这不仅因为它总长踞世界之冠,为它投入了巨额资金,而且工程量宏大,从欧洲隧道中挖出的土石方计750多万立方米,相当3座埃及大金字塔的体积;隧道衬砌中用的钢材,仅法国一边就相当于3座埃弗尔铁塔,更重要的是它成功地解决了许多工程技术上的难题。它在技术上的方针是要求可靠、先进。可靠与先进之间不总是统一的,所以它几乎‘排除了为隧道工程进行专门的创新设计的可能性’,而是‘采取经过试验的成熟技术’,‘在各个部分精心选取欧美不同国家的标准设计,以确保其高质量和可靠性’。将成熟的先进技术在复杂的工程中成功地加以综合应用,本身就是一种创造,这样做大大减小了工程风险。这种技术方针和观念,在我国对高、新技术的呼声十分高涨和普遍的情况下是有借鉴意义的。如何在权衡技术的先进性与可靠性以及资金、时间的限制之间,找到一个合适的‘度’,是各种项目决策中值得认真研究的。
在欧洲隧道的建设中比较突出的工程技术成就如下(当然不限于这些):
1.充分的地质工作和正确的判断
地质钻探工作从58年做到87年,重要的钻孔达94个。浅层勘探在海底以下150m之内,考虑隧道布置的范围;深层勘探在海底以下800m之内,主要为评价地震风险提供数据。海底钻探曾采用大型北海石油钻机,每个钻孔平均费用约为50万英镑。勘探发现海底有一层泥灰质白垩岩(ChalkMarl),厚度约30m,饱和容重约23KN/m3,抗压强度6~9MPa,变形模量800~1600MPa,蠕变系数φ=,渗透系数(1~2)×10-7m/s。该岩层抗渗性好,硬度不大,裂隙也较少,易于掘进,隧道线路就布置在它的下部,距海底25~40m。由于岩层的起伏,而隧道要求一定的运行坡度,所以隧道轴线在平面和立面上均呈平坦的W形。工程专家们认为,充分的地质资料和正确的判断,使欧洲隧道找到了理想的岩层。
2.精心、合理的安全设计
海底隧道的规划设计把施工和运行安全放在极重要的地位。之所以不采用一条大跨度双线铁路共用隧洞,是为了减小海底施工的风险和提高运行、维护的可靠性。在两条单线铁路洞之间是后勤服务洞,每间距375m设置直径为的横向通道与两个主洞连接,连接处有防火撤离门。后勤服务洞的主要功能是在隧道全长范围内提供正常维护和紧急撤离的通道。在接到命令后,它可在90分钟内将全部人员从隧道和列车中撤到地面。它还是向主洞提供新鲜空气的通道,并保持其气压始终高于主洞,使主洞中的烟气在任何情况下都不能侵入后勤服务洞。后勤服务洞在施工期是领先掘进的,这为主洞的掘进提供了详尽的地质资料,对保证安全施工有重要意义。此外,隧道的运输、供电、照明、供水、冷却、排水、通风、通讯、防火等系统都充分考虑了紧急备用的要求。
3.较好地解决了某些特殊的工程技术问题
列车在很长的隧洞中高速行驶时会产生压差和空气动力阻抗。特别是欧洲隧道列车的阻塞比(列车与隧道断面之比)很高,如果没有卸压管,列车的驱动力需要增加很多。为此隧道沿线每250m设一个2m直径的卸压管,从后勤服务洞的顶上跨过,把两个铁路主洞连接起来。在设计阶段对卸压管的作用做了许多模型研究,使其有较好的空气动力效应,并避免在管中产生气流冲击。
铁路隧道和列车要承受车辆震动的长期反复荷载。为此铁道路轨采用了一种称作‘松那飞’(Sonneville)的系统。一系列连续焊接的铁轨下面设弹性减振装置,使车辆在轨道上行驶非常平稳。该系统的部件要经过多种性能测试,包括经历1000万次荷载周期的疲劳试验,以确保系统的可靠性。
该隧道还采用一种由铁路控制中心操纵的‘司机台信号系统’(CabSignal)。这种信号不是在机车外面或轨道旁边,而是显示在司机台的屏幕上。一旦司机对信号没有作出反应,自动列车保护装置就会使列车减速,直到停止,保证列车安全行驶。
长隧洞掘进时的通风往往是施工中的一个难题。欧洲隧道对空气循环的途径和风机的布置都作了详细的规划和研究。不仅设置通风管,而且也利用隧洞本身作为通风通道,使开挖面的风量达到,符合社会保障与安全组织和地下工程协会规定的通风标准。
4.掘进机发挥重要作用
隧道施工的主要设备是隧道掘进机(TunnelBoringMachines),具有不同的型号、尺寸和性能,出自欧洲、北美和日本的不同厂家。它们从英国海岸的莎士比亚崖和法国海岸的桑洁滩两个掘进基地开始,分别沿三条隧洞的两个方向开挖,共有12个开挖面,其中6个面向陆地方向掘进,另6个面向海峡方向掘进。开敞式掘进机适用于透水性较小的地层;封闭式掘进机适用于透水性较强的地层,其掘进头能承受11bar(1巴=标准大气压)的静水压力。最大的一台掘进机直径,全长约250m,重达1200T,(合同运行寿命2万小时),价值超过1000万英镑。它能完成掘进、钢筋砼衬砌块的安装、灌浆以及施工轨道敷设等一连串工序,实际就象一条自动化作业线。最高掘进纪录为428m/周,英国一边的6台掘进机平均掘进速度为150m/周。整个掘进工作按计划完成,只用了三年半时间。由于欧洲隧道工程每延误一天工期,仅贷款利息就要支付约200万英镑,因而施工速度至关重要。当工期对经济效益有重大影响而掘进工作面又受限制的情况下,采用隧道掘进机能发挥很好的作用。
二、欧洲一体化进程的产物和推动力
在英、法两国之间穿过海峡建立固定通道的想法,可以追溯到19世纪初的拿破仑一世时代。今天欧洲隧道竣工,尽管在工程技术上取得了重大的成功,然而‘200年来对是否建造英吉利海峡隧道的决策始终不是取决于科技方面,而是取决于围绕这个计划的政治环境’。长期以来英国方面反对建设海峡隧道的主要原因是考虑到军事上的风险,他们希望利用海峡作为抵御来自欧洲大陆军事入侵的天然屏障。随着国际局势的变化,上述顾虑逐渐消退。后来,英国加入了欧洲共同体,预期会有一个统一的欧洲市场,因而在英国和欧洲大陆之间建立更为方便、快捷的通道成了显而易见的需求。在1972-1992年的20年间,跨越英吉利海峡的客、货运交通量实际上增长了1倍。1992年英国与欧洲大陆的贸易占全部对外贸易的60%。
本世纪70年代以来,建设英吉利海峡隧道的决策主要受到欧洲一体化进程的影响。1987年12月隧道工程得以破土动工,是由于当时英、法两国政府对欧洲一体化都持比较积极的态度。英国首相、保守党领袖_夫人,支持把1975年曾被工党政府下令停止的隧道工程重新提上议事日程。‘法国总统密特朗则把这项工程视为国家强大的象征’。这次欧洲隧道得以竣工建成,两国首脑的推动,排除各种障碍,起了至关重要的作用。也就在欧洲隧道举行正式通车仪式的前一年(1993年秋),包括英、法在内的欧共体十二国签订了马斯切克条约,并将欧共体改名为欧洲联盟(EuropeanUnion)。从欧盟有关国家政府的观点来看,还有两个因素与隧道建设有关:一是运输政策,即通过建设高速铁路网,以利于节约能源和保护环境。这将大大扩展海峡隧道的影响范围和增加它的长期效益。二是地区政策,英、法两国希望通过隧道带动海峡两岸地区的繁荣。现在隧道连接地区(TransmanchRegion)已成为一个专门名称,包括英国的Kent和法国的Nord-PasdeCalais地区;后来把比利时的一些地区也包括进来,称作欧洲专区(Euroregion)。通过地区性的合作,一个称作TDP(TransfrontierDevelopmentProgram)的金融发展计划已经起动。这些‘从政治角度看显然有重大意义,对欧盟的发展,欧洲单一市场的形成和国际经济、文化合作交流,都会有重大促进。’但近期还不大可能对经济产生直接的重大影响。
实际上近20年来欧洲隧道项目的演变既是欧洲一体化进程的产物,又是它的一个推动力,两者相辅相成,几乎是平行发展的。如果有朝一日我们考虑台湾隧道问题时,则也必然要与祖国和和平统一的大业紧密联系再一起。
三、项目的特点和成败的关键
1.高度重视环境影响
在建造英吉利海峡铁路隧道的决策中有一个举足轻重的影响因素,就是‘欧洲委员会制订了一个长期的运输战略’,即发展电气化铁路网以减小汽车对环境的污染。‘欧洲铁路委员会还提出了2000年欧洲高速铁路系统的建议’,在这个计划中欧洲隧道的一端连接英国的各大城市,另一端连接包括法国、比利时、瑞士、荷兰、西班牙、意大利等国在内的大陆铁路网。这样欧洲隧道的影响和效应就大大超出了英吉利海峡两岸地区的范围。尽管人们对欧洲高速铁路系统的计划能否在2000年实现还存有疑虑,不过这至少说明欧洲的老牌工业化国家在大型基础设施的规划和决策中,已把汽车对环境的污染问题放到了一个十分重要的地位。对于刚刚起步准备大力发展汽车工业的中国,在研究决策汽车工业和建设铁路网的优先次序和投资比例时,也应把环境影响作为一个重要因素考虑进去?
欧洲隧道在建设过程中,终端车站施工尽量避免因开挖附近的土地而影响当地环境。铁路经过村庄的地段都做了遮档视线和隔音的屏障,以保护居民生活。车站以及周围进行了绿化,种上草皮。施工期间有专人对环境进行监测,并由公共关系部门和环保部门共同处理环境问题的投诉,如道路泥泞、尘土、噪音等。车站的建筑高度都不超过四层,创造与环境协调的建筑风格。英国国家环境研究院甚至还在施工之前对车站附近蝴蝶的数量进行了统计调查,结果证明施工没有对其数量产生影响。
2.利用私人资本建设大型基础设施的尝试
建造英吉利海峡通道,财务问题成了实施的关键。1981年9月11日英国首相_和法国总统密特朗在伦敦举行首脑会读后宣布,这个通道必须由私人部门来出资建设和经营。1985年3月2日法、英两国政府发出对海峡通道工程出资、建设和经营的招标邀请。此后收到过四种不同方案的投标。1986年1月两国政府宣布选中CTG-FM(.)提出的双洞铁路隧道方案。CTG-FM是一个由两国建筑公司、金融机构、运输企业、工程公司和其它专业机构联合的商业集团。它在1985年已分为两个组成部分,一个是TML(TransmancheLink)联营体,负责施工、安装、测试和移交运行,作为总承包商;另一个是欧洲隧道公司(Eurotunnel),负责运行和经营,作为业主。1986年3月英、法政府与欧洲隧道公司正式签订协议,授权该公司建设和经营欧洲隧道55年,后来延长到65年,从1987年算起。到期后,该隧道归还两国政府的联合业主。协议还规定两国政府将为欧洲隧道公司提供必要的基础设施,并且该公司有权执行自己的商业政策,包括收费定价。
1994年5月6日英、法两国首脑参加了欧洲隧道正式开通仪式。_首相把它‘看作私人部门有能力建设这样大规模工程的标志’,认为是政府‘树立的一个样板项目,来引导私人企业投资基础设施建设’;担人们对这一点是有疑议的。某些著作中的基调观点,是整体上肯定,也指出它存在的问题,认为“这个工程比任何其它工程都明显地表现了‘自由市场’投资于交通基础设施项目的成功。主要是私人企业按市场方式运作和政府部门的行政管理难以协调。
对这个‘样板’项目持否定态度的也大有人在。由于这个工程的预算从1987年估计的48亿英镑,上升到建成时的106亿英镑;全面营运的时间从原来计划的1993年初,推迟到1995年,使欧洲隧道公司的财务状况极端困难,自然大大损害了这个‘样板’的形象。有专家估计隧道公司至少每年要亏损2亿英镑,资金流肯定会出现负值,公司将不得不寻求新的贷款,然而谁会愿意再贷款呢?
据该公司的一位高层经理透露,1995年该公司的营业收入约3亿英镑。仅为预测值的60%。不过这位经理解释说,这是因为95年隧道还没有正常运行,平均每月隧道的客运量仅100万人次,预期今后每年有5%的增长。这位经理本人也是隧道公司的一个股东,他说他是在为儿孙们投资。
从政府角度看,利用私人资本建设欧洲隧道的尝试是基本成功的。英国政府已计划就连接欧洲隧道终端与伦敦之间的铁路,与私人公司签订一个新的期限为999年的建造和经营特许合同。然而,从私人资本的角度如何评价,最终将取决于欧洲隧道公司能否在今后几年内渡过它的财务危机。
3.项目管理——以合作和协调克服分歧和对抗
隧道公司高层管理人员认为,‘工程技术问题相对来说解决得比较顺利,主要教训来自组织机构、合同和财务方面’。该项目涉及众多的‘干系人’(stakeholders)和‘当事人’(parties),包括英、法两国和当地政府的有关部门,欧、美、日本等220家贷款银行,70多万个股东,许多建筑公司和供货厂商,管理的复杂性给合作和协调带来了困难。
合同是合作的基础。掘进工程采用的目标费用合同(targetcostcontract)是比较合理的,因而掘进工程基本上按计划完成。隧道列车的采购采用成本加酬金合同(costplusfeecontract),由于无激励因素带来较多延误和超支。固定设备工程采用总价合同(lumpsumcontract)并不是一个好办法。由于欧洲隧道是以设计、施工总包方式和快速推进(fast-track)方法建设的,在签订合同时还没有详细的设计,这就在合同执行过程中潜伏了分歧、争议和索赔。因而,总价合同决不意味着固定价!合同各方的对抗曾经引起欧洲隧道的多次危机。例如,_年总承包商(TML)的费用增加,导致了90年初业主(欧洲隧道公司)的资金告罄。于是银行财团、业主合成包商各方产生了尖锐的矛盾,几乎到了项目吹台的边缘,经过艰难的谈判,各方才接受了一个拆衷办法,英、法两国以政府机构名义参与贷款来代替政府的直接支持,从而暂时渡过了这次危机。
如果中国要想建造台湾海峡隧道,也必然会面临海峡两岸、国内、国际等多方面的复杂关系。认真研究,签好协议,建立并保持良好的合作关系,将是至关重要的。
4.项目‘孵化’是项目成败的一个关键
项目孵化是指从提出项目设想到论证、立项和组建主办机构的过程。欧洲隧道经历和面临的危机,其原因可追溯到它的孵化期。
项目在论证阶段曾聘请多方面的独立咨询的交通专家进行预测。普遍认为92年之后的15-20年内跨海峡的交通需求可能会翻一番。91年英、法、比利时之间的跨海峡旅客市场已达到3130万人次(包括飞机、水路和火车轮渡)。预测2003年会达到5830万人次,其中3930万将通过隧道旅行。单实际情况表明当初对效益的预测偏于乐观。
欧洲隧道在组织结构上有明显缺陷。参加过隧道建设的人也认为:如果现在开始干的话,不能让发起人(指英法隧道集团CTG-FM)又作为建设方,允许自己的合作伙伴(指总承包商TML和牵头银行)与他们自己(指欧洲隧道公司)签订合同。隧道公司财务主说:‘财务上最致命的教训是必须有一个强硬的、独立的业主,来对建设和贷款问题进行谈判。’承包商TML是一个庞大的集团,一家总包,削弱了投标的竞争性,也是导致造价高昂的一个因素。捕捉立项时机是项目孵化的核心内容。欧洲隧道立项再过去至少被放弃或中断了26次,这次是不是最佳的时机呢?有人说:如果70年代隧道工程不中断,造价不会象现在那样高昂,财务上的困难会小得多。这种说法有待推敲。不过欧洲隧道几起几伏的演变至少说明重要项目的论证不能只进行一次;昨天不可行的,今天也许变成可行,错过机遇,明天又可能成为不可行;这需要保持一个小组,进行长期的可行性预测和跟踪,捕捉立项的最佳时机。
尽管欧洲隧道在孵化期带来某些先天不足,目前项目业主又负债累累,但它的银行财团负责人摩登仍宣称‘这个赌注的结果要看本世纪末欧洲隧道的所有权掌握在谁的手里。’他认为能够在下世纪初度过平衡点(breakevenpoint),开始盈利。
对英吉利海峡隧道工程做全面评价,目前还为时过早。不过回顾一下世界上以往一些大型土木工程的建造历史,也许不无好处。‘苏彝士和巴拿马运河的实际费用都超过预算50倍以上。再近一点,连接日本本土和北部岛屿北海道的Seikan单洞铁路隧道24年才建成,比原计划整整超过了14年。相比之下欧洲隧道的命运就算不错的了。无论如何这些伟大的工程都在地球上发挥着重大的作用。
四、台湾海峡隧道的构想
英吉利海峡隧道激发了人们更多的想象。白令海峡隧道、直布罗陀海峡隧道都已开始了方案研究和论证。中国人能不能在21世纪有自己的台湾海峡隧道呢?
1.愿望和需求
密切台湾和中国大陆的联系是海峡两岸以及海内外炎黄子孙长期的共同愿望。建设台湾海峡隧道必将促进海峡两岸的来往,有利于中华民族的共同繁荣和富强。
目前台湾资本在大陆的投资已初具规模,95年投资额达60亿美元。海峡两岸经济互补、互利,共同繁荣的前景是乐观的。台湾的经济辐射自然会带动福建的发展。隧道两端地区会成为新的经济增长点。台湾海峡经济区与长江三角洲、珠江三角洲连成一个高效的交通网,必将促进地区和整个中国经济的增长。预计该海峡隧道的交通需求将是巨大的。台湾2100万人口,即使每年有1/3到大陆探亲、观光一次,往返就是1400万人次。中国12亿人口,即使在60年内每人到祖国宝岛旅游一次,每年往返就是4000万人次。如果考虑大陆民工可能去台湾做劳务,以及商务与国际旅客,估计每年会达到6000万人次,这将近是目前跨英吉利海峡客运总量的2倍。自然,还会有其它货运业务。
2.地理与线路
台湾海峡最窄的地段是从福建福州市附近的平潭到台北市附近的新竹,直线距离约120km,海峡深度普遍在80m之内。计及隧道在两岸的延伸总长可能达150km。这条线路的两端均靠近台湾和福建的政治、经济、文化中心。此外,从福建的厦门经金门、膨湖到台湾的台南以北,也是一个可供选择的方案。好处是中间有几个岛屿,不过线路要长得多。
3.困难和问题
显然,最大的困难是台湾海峡两岸的长期阻隔。然而,加强海峡两岸的联系,建立贸易和通讯关系,密切科技与文化的交流,毕竟是历史的潮流。建设海峡隧道正好提供了一种合作极好机会。台湾海峡地层处于较新的地质活动年代,而且地震比较频繁。这需要对其工程地质作充分的勘测和论证。台湾海峡隧道很长,约为欧洲隧道的3倍,在通风设计、施工掘进方面也会提出一些需要专门研究的工程技术问题。
建造如此宏大的工程,按目前价格就可能需要数千亿人民币。台湾海峡两岸近十多年来经济增长率均较高。预期到2010年,中国大陆和台湾的国内生产总值有望达到英、法两国当前的总和。那时中国会有更强的经济实力。不过筹集巨额资金仍将是一个难题。是否借鉴欧洲隧道的做法,采用建设—经营—转让(BOT)方式,发行股票,向国际金融市场筹资等,都需要做深入的研究。
4.准备和时机
市政隧道论文范文高中 第2篇
论文摘要:全面介绍某公路改建工程隧道开挖与支护、防排水、二次衬砌、地质超前预测预报与监控量测等方面的技术,解决了地质超前预测预报、光面爆破、无滴渗防水、二次衬砌等多项技术难题。 论文关键词:公路隧道;施工技术;超前预测预报 1 工程概况 工程规模 项目桩号K15+900~K23+800,共长。其中隧道工程主要有:明洞开挖土石方11906m3、洞身开挖石方103046m3,明洞衬砌1644m3,初期支护喷射砼5402m3,二次衬砌模筑砼13892m3,注浆小导管20440m,管棚3690m,砂浆锚杆100215m、洞内路面2496m3。山坑隧道405米/半座、小黄操口隧道795米/座。 工程地质条件 项目位于王村口沉降盆地的南侧,主要受新华夏构造体系控制,岩浆活动和断裂构造较发育,褶皱不发育;中生代以后主要表现为脆性构造变形,并经历了多期构造运动,最终形成了一系列以北东向为主、其次近南北向、北北东向及北西向的断裂。 根据《中国地震动参数区划图》划分,路线所经地区地震动峰值加速度系数小于。地震动反应谱特征周期小于,相当于地震基本烈度小于Ⅵ度,本项目隧道按Ⅵ度设防。 2 工程施工技术 根据隧道工程特点,按照“新奥法”的施工原则,总体施工顺序:施工准备测量放样洞口防排水工程施工明洞开挖防护超前管棚施工洞身掘进洞身支护二次衬砌洞内路面整平层洞内路面面层洞内边沟洞门工程墙面瓷砖、拱部内墙喷涂、电器安装等竣工验收。 洞口施工 土方施工采用机械化作业,石方爆破主要用浅眼台阶爆破法,底部和边坡用小炮松动爆破,以保护底板和边坡受破坏,倾角按设计边坡施工,预留保护层厚,在明洞拉槽开挖前结合路基情况事先做好排水工作,洞口环形截水沟先期完成。 洞身开挖 隧道现场监控量测是新奥法原理进行隧道设计和施工必不可少的手段,施工时要根据设计要求加强量测,及时反馈以便修正设计,指导施工。 ①Ⅴ级围岩。Ⅴ级围岩条件较差,先进行超前管棚或超前小导管施工,开挖采用留核心土分部开挖法进行施工。开挖采用弱爆破并采用预裂爆破,严格控制炸药用量。施工中遵循管超前,弱爆破、严注浆,短开挖,强支护,早封闭、勤测量的原则。 先施工管棚超前支护,然后再开挖上部环形部,上部初期支护完毕后进行核心土开挖,最后进行下部开挖及支护。初期支护采用锚、喷、网、工字钢联合支护结构和每榀间距50cm钢拱架支撑,系统锚杆采用Ф25中空注浆锚杆,锚杆长4m,间距×,按梅花形布置,喷混凝土厚25cm,并通过施做钢架锁脚锚杆加固拱脚,使初期支护与围岩形成完整体系。开挖完成后立即喷射混凝土封闭围岩,然后打锚杆、挂网,钢拱支撑后,经分层喷射混凝土至设计厚度。②Ⅳ级围岩。采用上半断面长台阶法施工。短开挖、强支护、快衬砌,在上断面支护保证岩体稳定的条件下,再进行边墙扩大及底部开挖,上部开挖高度暂定为5m,施工时视实际情况调整,进尺一般控制在2m以下,并严格控制爆破药量,保证光面爆破效果。初期支护采用锚、喷、网联合支护结构和必要时设置超前锚杆,锚杆长,间距×,按梅花形布置,喷混凝土厚15cm,使初期支护与围岩形成完整体系。开挖完成后立即喷射混凝土封闭围岩,然后打锚杆、挂网,经分层喷射混凝土至设计厚度。 防排水层施工 ①排水工程:在衬砌与喷锚层之间设隧道专用复合防水卷材,复合防水卷材能使漏水能从衬砌背面通过排水滤层排至墙角,再由墙角处衬背纵向盲沟集水,通过横向排水管引出。衬背纵
市政隧道论文范文高中 第3篇
关于公路隧道工程的研究论文
一、公路隧道常见的质量问题
(1)隧道水害。在公路隧道所出现的一系列质量问题中,隧道渗漏水所造成的危害尤为普遍。隧道水害不仅增加隧道内湿度,降低路面抗滑性能,造成电路短路等
事故,危及运营安全,而且还易引起其他病害。由于隧道渗漏水、积水,将会造成衬砌开裂或使原有裂缝发展变大,加重衬砌裂损;当地下水有侵蚀性时,会使衬砌混凝土遭受侵蚀,并且随着渗漏水的不断发展,侵蚀程度日益加重;在寒冷地区,水是影响隧道围岩冻胀的重要因素,水害严重必然导致冻害严重[1-3]。
(2)衬砌缺陷。衬砌缺陷主要是因为衬砌空洞、厚度、强度、密实度等原因造成的衬砌变形、衬砌移动及衬砌开裂等。作用在隧道衬砌结构上的压力,与隧道围岩的性质、地应力的大小以及施工方法等因素有关。由于受技术和资金条件的限制,一些因素在设计前是难以确定的,所以在隧道衬砌结构设计中常带有一定的盲目性,导致结构强度不够或与围岩压力不协调,造成衬砌结构开裂、破坏。然而,工程上出现的衬砌开裂更多的则是由于施工管理不当(衬砌厚度不足、混凝土强度不够等)造成的。
(3)净空受侵或轴线偏位。因模板强度、刚度不足而出现跑模,或因测量误差过大,出现模板定位偏差过大,都有可能导致隧道净空甚至建筑限界受侵或者出现隧道整体轴线偏位。也有因对已建成隧道的衬砌质量缺陷进行套拱处理而出现限界受侵的情况。
(4)通风不畅。所有的公路隧道均需要通风,不管是自然通风还是人工通风。事实上,当前国内相当数量的公路隧道尤其是中长隧道,通风设施常常形同虚设,一般不开启(多数是为节省运营费用),造成洞内运营环境污浊。而且,国内公路隧道通风设计主要依据现行《公路隧道通风照明设计规范》[4],其中对运营通风之规定应该说较为详尽,但火灾通风仍需进一步探讨从而以规范形式予以认定。
(5)照明不良。我国公路隧道设计虽然都考虑了照明,但迫于运营维护成本的压力,许多隧道有灯具而未照明,而且这种现象相当普遍,甚至某些长度不短的公路隧道根本就没有安装照明灯具。事实上,国内现行相关设计标准及国外一些国家设计标准都规定长度大于100m的公路隧道应设照明。
(6)监控不力。监控包含有施工期间的监控和运营期间的监控。目前对这两方面的监控工作都不同程度存在着一些问题。我国在多座隧道中进行了成套技术的引进,但效果并不甚理想。
二、公路隧道质量检测评价体系的建立
2.1 建立公路隧道质量检测评价体系的原则
(1)系统性。高速公路隧道交通环境评价是一个涵盖多因素、多目标的复杂系统,评价指标体系应力求全面反映各隧道的综合情况,既能反映交通流运行状况,又能正确反映交通流与通风、照明等机电设施的关联特性,以保证评价的全面性和可靠性。
(2)科学性。评价指标体系一定要建立在科学的基础上,指标概念必须明确,并能客观、真实、合理地反映隧道运行环境的内涵。
(3)实用性。评价指标体系应当层次清晰、指标精炼、方法简捷,使之具有实际应用和推广价值。同时,选取的评价指标要有可操作性,指标含义明确易于被理解,指标量化所需资料收集方便,能够用现有方法和模型求解。
(4)独立性。高速公路隧道运行环境评价的'指标与指标之间应是相互补充、相互协调的,充分考虑指标之间的相关性,避免指标之间的重复与冲突,实现指标体系的最优化。
2.2 施工质量评价指标的依据
目前,我国在对工程质量评价中,没有统一的评价标准,没有形成一致的评价指标体系,已有的规范只是通过隧道影响因素分析,在初选的隧道交通工程运行指标中,先通过德尔菲法确定重要指标,剔除一些对评价结果无关紧要的指标,再通过指标之间的关联性进行筛选,筛选出主要影响因素,使之条理化形成一套指标体系。针对当前公路隧道建设质量保证体系的缺乏,以及解决此问题的迫切性,笔者在综合我国公路隧道已有建设经验及相关教训的基础上,结合我国国情,通过对公路隧道建筑材料、施工过程及竣工验收各阶段检测内容、检测方法、质量指标的研究,力图建立公路隧道建设质量保证体系的基本框架并将其程序化。相信此研究对推动我国公路隧道建设质量保证体系的统一化、标准化和信息化,从而总体提升我国公路隧道的建设质量,防止和杜绝本不应该出现的质量问题或质量隐患会起到一定作用。
市政隧道论文范文高中 第4篇
根据设计,SMART将按3种模式运营[2-3],如图3所示。1)模式1。无暴风雨或低降水量情况,没有洪水分流到该系统中,泄洪隧道处于无水状态,公路隧道正常对外开放,见图3(a);2)模式2。在中等洪水情况,即上游Klang/Ampang交汇处的L4雨洪流量站测得流量达到70~150m3/s,通过原有的泄洪设施排泄的流量控制在50m3/s以内,超出的部分则需通过SMART隧道泄洪,但公路隧道区段仅限于隧道的底部空间用于泄洪。公路隧道正常对外开放,见图3(b);3)模式3。大暴雨、特大暴雨情况下,即上游Klang/Ampang交汇处的L4流量站测得流量超过150m3/s,公路隧道关闭交通,隧道内的车辆和人员全部撤离,隧道全断面泄洪,见图3(c)。对模式3而言,在隧道接到泄洪通知后45min内,隧道内的所有车辆及相关人员必须完成撤离,每次过洪后重新恢复道路交通需要52h。对于3km的公路隧道区间,由于隧道需要在干湿2种环境中运营,因此隧道内的照明设备及CCTV系统均按IP68设计,即可以被水淹没。隧道的应急电话系统设计为可快速更换类型。设计最大洪峰泄洪时流速为4.7m/s,所有的机电设备及指示牌尽可能按流线型设计,且设备安装应有足够的刚度与强度。工程按百年一遇的暴雨标准设计。依此标准,一年内绝大部分时间SMART都将按模式1运行,可能会有7~10次按模式2运行,而按模式3运行的频率为每年1次甚至几年1次。
2隧道地质情况与施工方法比选
2.1隧道地质情况
地质调查结果表明,SMART隧道所经历的地层主要是KualaLumpur石灰岩(简称“KL石灰岩”),这种地层将是工程面临的巨大挑战,隧道纵断面见图4(a)。KL石灰岩90%以上的成分为方解石,具有典型的Karst地层特征:1)石灰岩地层出露地面形成陡峭绝壁或深切峡谷,见图4(b);2)长期的水溶作用形成溶洞,溶洞大小可以与隧道掘进机的尺寸相当;3)溶洞往往与地下水相联系,隧道施工过程中的降水活动可能给周边建(构)筑物带来风险;4)在历史上地层出现塌陷的地方往往被松软土层充填,这种松软而不密实的充填物对盾构的掘进施工将存在极大风险;5)施工降水可能引发新的地层塌陷。从施工的角度来看,最为关键的就是岩层的起伏变化以及遭遇大型溶洞。为了准确地确定岩层的起伏变化情况,在2001年利用Mackintosh探钻打了1072个地质探孔。另外,为了解溶洞及上卧层疏松土的松软程度及低密度情况,对2个分岔井间的隧道段,按平行于隧道轴线布置5条线路进行微重力试验。试验结果大致给出了岩石露头的最低点以及大溶洞存在的区域范围。然后又在这些区段进行地质钻孔补测,结果表明微重力试验的结果能大致给出岩层露头的定性而非定量结果。在施工初期又采用电阻物探法进行地层测探,以便获得更多的地层信息。
2.2施工方法比选
基于沿线的地质条件,对明挖法、新奥法以及盾构法等几种常用隧道施工方法进行综合比选,为了减少施工风险以及施工对周边环境的扰动,最终推荐采用盾构施工的方案。在盾构的类型(EPB或泥水平衡)比选方面,一方面泥水盾构较EPB能更好地适应复合地层,而且当时超大断面的泥水平衡盾构已有多个成功案例,而直径大于13m的土压盾构工程还没有先例,因此最终选定2台泥水平衡盾构进行施工。由于水力条件要求,隧道仰拱的标高不能变动,因此隧道掘进施工将不可避免地遭遇软硬并存的复合地层。
3SMART隧道设计
3.1结构设计
根据隧道排洪与公路交通多功能的需要,与常规的交通隧道或泄洪隧道相比,沿线的结构布置、隧道的断面形式以及整条隧道的防灾减灾系统均需要有特殊的考虑和安排。在3km公路隧道的南、北两端各设1座分岔井,作为车辆出入口与洪水入口的分叉点。公路隧道的出入口分别设在KampongPandan环形岔路口和KL/Seremban高速公路的立交处与既有线路衔接。2个分岔井还兼作公路隧道的通风井与隧道泄洪的调压井。另外,3km段交通隧道每隔1km布设1座中间风井。作为防灾措施之一,每250m左右设1座联络通道连接上下层隧道。SMART主体隧道采用盾构法掘进施工,隧道结构采用管片衬砌。综合考虑隧道的泄洪能力以及公路隧道的布置需要,隧道内径设为11.83m。管片设计除了要平衡衬砌厚度与含钢量间的关系外,还考虑管片的正常处置状态(如拼装、翻身等)的受力情况、在高强度石灰岩层中掘进时千斤顶反力集中对管片的作用以及在松软地层中管片的受扭不利工况等。管片采用C50混凝土,厚度为500mm,含钢量为90kg/m3。管片环宽为1.7m,1环包括9块管片,即6块标准块、2块临块和1块封顶块,每块标准块的质量为10.3t,1环的总质量为82t。管片的环向和纵向均采用M25高强度螺栓连接。根据隧道线路布置,最小转弯半径仅250m,管片最大楔形量为110mm。管片不设直线环,直线环由左曲环和右曲环交替拼装而成。中间3.0km公路段,采用双层结构布置,由2道横隔板将隧道分成3部分空间,上部为向南的车道,中间空间为向北的车道。底部的空间用于运营模式2和模式3情况下泄洪。每层各提供3个车道,包括2个宽3.35m的正常车道和1个应急车道。受空间限制,隧道内只能通过高度不超过2.55m的小型车辆。隧道内的设计限速为60km/h,实际显示的限速为50km/h。隧道的内部结构布置见图6。
3.2防水设计
对SMART隧道工程而言,由于兼具排洪和公路交通的双重功能,因此对隧道的防水设计也提出了特殊要求,内部结构的防水要求较常规交通隧道要高得多。盾构隧道管片的防水通过在管片上预留密封沟槽安装EPDM橡胶密封实现,最大压力水头按32m考虑。中间3km的公路隧道段在运营模式2情况下,底部的空间水流按有压流考虑,而中部和上部均为无水环境下的公路交通,因此必须要防止水从底部渗漏到中上部空间,这是SMART隧道防水设计的关键与难点所在。为了最大限度减少水从底部渗漏到下隔板,所有施工缝的钢筋都全部连通,并在接缝处预留压浆管。隔板和竖墙的配筋要足够,以防止混凝土施工的早期裂缝。在C40混凝土配合比设计中选用低水化热的PFA水泥,混凝土浇筑的温度严格限制在60℃以内,对浇筑的隔板采取蓄水养护。为防止水通过管片环缝渗入上隔板,在环缝处设“T”形止水带。另外,在隧道管片衬砌与内衬之间预留压浆管。
3.3防灾减灾设计
SMART隧道工程设计开始于2001年,恰逢欧洲勃朗峰隧道火灾(1999年)和阿尔卑斯山隧道火灾(2000年)不久,因此公路隧道的防灾减灾设计尤为受到关注,为此咨询公司专门开展了火灾的数值模拟分析。假定隧道的下层道路发生2~3辆小汽车相撞产生10MW的大火燃烧60min。采用一维数值模拟分析了中间隔板底部的导热情况,通过分析不同深度混凝土结构的温度来推测混凝土剥落的情况。分析结果表明大火情况下混凝土剥落现象仅限于30mm深度范围,混凝土内部的钢筋不致发生软化现象。另外,作为防灾减灾措施的通风系统也十分重要。3km长的公路隧道按1km间隔共设4座风井,每座风井安装8套通风扇和增压风扇为上下层交通隧道供风,增压风扇主要作用是阻止火灾情况下烟雾进络通道,隧道通风模型见图8。在隧道的出入口设置轴流式风机进行新风补充。通风系统的操作系统与隧道SCAVADA系统相连。用于监测隧道内CO浓度与可视度的仪器安装在联络通道附近,整个通风系统根据监测的结果自动调节风量与风速。3km公路隧道沿线每250~300m间隔设联络通道用于连接上层与下层隧道,具置则根据具体地质情况与施工条件确定。一旦发生火灾,在无事故的隧道层则供增压风,以阻止烟雾进入非事故隧道。电气开关房布置在联络通道的中间,见图9。在联络通道与隧道的连接处设水密门,确保泄洪期间水不进络通道。根据地质条件的不同,联络通道采用马蹄形开挖断面+现浇混凝土衬砌和椭圆形开挖断面+喷射混凝土衬砌2种形式。
3.4洪水监测与预警系统
由于SMART工程主要的功能是泄洪,并且还要实现泄洪与公路交通不同运营模式之间的转换,因此洪水的监测与预报系统(FloodDetectionSystem简称FDS)必不可少。该系统除了为公路隧道区间不同运营模式间的转换提供水情预报外,还对SMART工程中各个子系统运营状态进行监测与预警。这些系统包括通信系统、预警系统、隧道内安设的传感器、公路隧道出入口的水密门以及蓄洪池的闸门等。更重要的是在公路隧道按模式2或模式3运行时,该系统将为SMART工程中控室和交通管理中心提供实时完整的信息。洪水监测系统安装在SMART工程中控室,包括7个子系统:1)产流区域监测系统。28个遥感水文站,对河流与产流区域的流量进行实时监测,为FDS系统模型提供输入;2)预报模型系统。带有自动模拟与数据信息处置能力的水文与水动力学模型,可以对所选的地点进行长达2h的流量过程预报;3)预警系统。设置在关键位置的警报站;4)监测与控制系统。对各子系统信息进行整合与智能管理的软件系统;5)CCTV系统。设置在重要位置的摄像头和照相机等,以便对现场进行实时监督;6)SCADA系统。包括FDS与MCC系统的界面,用以SMART系统信息与传播的SCX系统;7)无线与光纤通讯系统。包括无线网络、电话以及光纤通讯系统等。
4主体隧道工程施工情况
4.1盾构设备选型
针对地下水位高、复合地层以及Karst地层特点,盾构选型的准则与依据如下:1)马来西亚土地(包括地下)属于私有财产,根据土地征用的具体要求,隧道的线路尽可能落在地面公路的土地使用范围内,盾构设备必须满足最小半径250m的急转弯情况;2)覆土厚度范围10~20m,因此盾构设备必须满足浅覆土施工的工况条件;3)为提供开挖面正面平衡精度,防止施工过程中开挖面前方坍塌,盾构采用泥水-气平衡系统;4)盾构绝大部分都是在石灰岩中进行掘进,部分区域会遭遇溶洞或岩石露头的突变等情况,盾构必须具备在复合地层中掘进施工的能力。经综合比选,SMART隧道采用2台外径13.21m的泥水平衡盾构进行施工。所采用盾构由德国Herrenknecht公司提供,第1台在合同签订后12个月供货,第2台的到货时间滞后2个月。刀盘的配置必须满足在复合地层掘进的需要,值得一提的是盾构采用了球形主轴承,这样允许刀盘与主轴承间以小于90°的夹角进行切削以满足急曲线转弯的超挖需要,同时也减小了作用在隧道管片上千斤顶的行程差,这样可以实现最大的超挖量达到400mm。这一特性还可以满足在岩石地层条件下,将刀盘缩回为查刀与换刀提供一定空间。为满足不间断地进行气压条件下对刀盘上的刀具进行更换,盾构配备了2个气闸室和1个小一些的材料闸室。盾构还配备了2套超前钻探设备和1套振动探测系统以供对开挖面前方的地层进行超前探测。
4.2隧道主体施工情况
隧道的掘进施工始于2003年11月25日。采用2台直径13.2m的泥水平衡盾构从北侧风井始发朝相反的2个方向始发掘进,盾构TUAH用于北侧隧道掘进施工,盾构GEMILANG则朝南掘进。盾构TUAH于2004年6月从北侧风井始发,经过24周的掘进,于2004年11月,到达北侧分岔井,共掘进了737m。2005年1月底,盾构TUAH从北侧分岔井重新始发开始第2段区间隧道的掘进施工,掘进的长度为4550m。SMART北侧盾构隧道的部分参数见表2。工程经过多次延误后,公路隧道段于2007年5月14日下午3:00正式通车,而泄洪隧道段最终于2007年7月底竣工。就在公路隧道通车后的几个星期内,隧道就进入运营模式3泄洪。截至2010年7月18日,SMART系统对7次灾难性的暴雨洪水成功实施分流,从而使吉隆坡市中心免遭内涝之灾。
4.3施工的主要挑战与应对策略
盾构掘进施工中潜在的风险与挑战主要包括:地层沉降或坍塌、Karst溶洞或坑穴以及泥水逃逸导致地表坍塌隆起、开挖面坍塌和泥水溢出地面等。为了防止所述风险并尽量减少泥水损失,施工中采用了一系列的技术措施与方法:1)针对溶洞的位置、大小、地层特点等信息,基于Mohkam模型对开挖面的平衡压力进行计算分析;2)根据地层特点将掘进分为均质地层中掘进、复合地层(掘进断面中含岩石和沉积土)中掘进、交界面中掘进以及在Karst溶洞中掘进等工况,针对不同的工况条件制定相应的盾构掘进施工参数体系;3)对地表沉降进行实时监测,通过监测数据及时反馈给盾构操作人员以降低地表隆沉与冒浆的风险。施工中采用的一些其他措施还包括:1)根据不同的地层情况及泥浆的损失情况及时调整泥浆的组成成分并补充泥浆量;2)在敏感环境区域采用补偿注浆、压密注浆和岩石裂隙注浆3种方法从地表对开挖面前方地层进行注浆加固。根据不同的具体情况选择不同的注浆方法与浆液配比。当地面不具备条件时,也可以从盾构内部进行注浆加固。
5结论与讨论
市政隧道论文范文高中 第5篇
公路隧道工程的地质勘探技术研究论文
公路工程的建设需要跨越自然地质条件不同的区域,若公路经过山区或者河流区域时,需要开挖山岭隧道或河底隧道。隧道的开挖技术与该地区的地质环境具有密切联系,为保障隧道工程的安全性,应对需要开挖隧道的地区进行科学的地质勘探,为公路工程的规划、设计及施工提供必要的依据和指导。
一、公路工程隧道地质勘探
(一)隧道工程地质勘探必要性
地质勘探是通过钻探、电探、震探等一系列方法对构成地质条件的各个要素进行测试的一种技术,为煤田开采、石油开采、地下工程的建设等各项工作提供必要的技术参数。隧道是在天然地层中修建的建筑物,隧道工程建设的各个环节,如位置选择、工程设计、施工技术等均与地质条件有紧密关系。以山岭隧道为例,修建山岭隧道时应对岩层地质构造、产状、裂隙发育、风化程度、地层含水量、地层温度、有害气体等各个要素进行地质勘测,以决定隧道的深度、施工工艺及施工技术。对重点隧道工程,除常规的地质勘测外,还应进行区域性的工程地质调查、测绘及试验;若地下水对隧道具有重大影响时,还应进行地下水动态观测,计算隧道涌水量。隧道工程地质勘探工作主要关注的内容为隧道围岩的稳定性、地下水对隧道的影响、地层温度的影响、有害气体的组份、隧道位置及洞口位置的确定等。
(二)隧道工程地质勘探的主要内容
1.可行性研究阶段的勘探
隧道工程的可行性勘探主要目的是了解项目所在地的地质特征、各工程方案的地质条件及其控制工程方案需要的主要地质参数,为工程的路线设计、桥位设计、方案的选择、编制可行性研究报告提供准确的数据支持。这一阶段的探测工作主要是踏勘,对多个可能方案沿路线进行实地调差,对重要工点进行必要的勘探,大致探明地质情况即可。一般需要进行勘探的工点有大桥、隧道、不良地段等。
2.初步勘探阶段
初勘阶段一般以物探为主,物探的测区一般在测绘范围以内,当对物探解释有重要的对比价值或参考价值时,可进行勘测追踪,扩大测绘范围。在测量范围内,应按照物探方法,结合地形条件,对测线的方向、间距、测点的疏密、激发点与接收点的.距离及布置形式进行设定。物探方法较多,对隧道工程进行物探时,可根据隧道深埋和下伏岩体特性,选择合适的物探方法。电火花法、声脉冲轰震器、旁侧扫描声纳可用于水下隧道地质勘探;高分辨率反射法可用于深埋隧道的勘探;磁力、重力测量法则适用于矿体、煤层、采空区、溶洞、断裂等特殊构造的勘探。分离式隧道一般沿隧道轴线纵向布置2-3条物探测线,两洞口横向测线可布置2条,根据隧道长度、地质条件确定测线长度和测点间距;整体式隧道可适当增加纵向和横向测线。地质体或构造类型不同时,应设计2-3条物探测线穿过,每条测线的测点应在3各以上,若地质条件复杂时,可酌情增加测点数目。
3.详细勘探阶段
详细勘探主要是进一步探测初步勘探阶段未查明的地质问题,为后续工程的设计及施工提供必要的补充和校核,这一阶段探测技术仍以物探为主,具体选择方法可根据隧道所在地区的地形、地质条件决定。对山区岩质隧道进行探测时,应先进行地震勘探。进行地震勘探时,可沿隧道轴线布置一条以上的地震测线,以10-20m为间距设置测试点;若在测试过程中发现地质构造,可将测试点数据布置密度增加;两洞口布置横测线,测点距离设置为5m;若在洞口或洞身发现溶洞或其他构造破碎带,可根据具体情况适当增加横测线或测试点。公路为上下行时,对于地质条件简单、岩性单一、无地质构造的短小隧道可作为一条隧道,组织勘探工作外,其余均应作为两条隧道进行单独勘探。勘探方法如下:用声波法对岩体的弹性纵波波速和横向波速进行同时测定,用于计算岩体的弹性特征值;测试岩石试件的弹性波速,以计算岩体的完整性,从而判定围岩的破碎程度;在进行地震勘探时,若发现明显的地质构造或溶洞时,可利用其他方法进行再次勘探,以供验证;采用电探时,可沿隧道轴线设三条测试线,其中两侧的测试线与主测线的间隔距离为20m,测点间距为20m;洞口设置横测线,间距为10-30m;对水下地质进行物探时,应根据水域的水底地形、水体流苏、水体深度等情况决定物探方法的选取,一般可采用多种方法进行综合探测,勘探主线至少为2条,横测线可根据水流方向布设,至少为3天,测点间距应小于陆上物探测点间距。
二、隧道工程地质勘探测试项目
隧道工程地质勘探测试项目主要包括地应力、岩土力学、水文地质、水质分析以及其他综合测试。地应力测试方法多采用水力压裂法,其他方法可作为辅助方法。岩体内部应力状态存在一定的差异性,可利用应力试验,并结合岩体组份的分析及构造分析,对岩体的主应力方向进行确定,岩土的力学试验常用测定标准为《公路工程地质勘察规范》;隧道工程在建设过程中,需要大量的钻探操作,地质勘探孔的设定应考虑水文地质试验孔的设定情况,地质勘探孔终孔可作为后期的水文地质试验的观测孔,若发现钻探孔终孔含有大量地下水,应考虑进行专业的水文地质勘探,以获得水文地质参数。对隧道内的主要含水层取样进行水质分析,看是否满足生活、工程、消防用水的要求,一般测试样品为1-3组。综合测井是配合钻孔,利用声波测井和放射测井的方法,从多个方面获得隧道围岩工程所需的地质、水文等各项参数。
三、总结语
公路隧道工程的施工需要科学的地质勘探,这是为后期工程的设计、施工、运行提供的基础保障。在实际的勘探过程中,应根据具体的地质情况进行勘探方法的选择及变通,确保勘探数据的准确性及有效性。
市政隧道论文范文高中 第6篇
摘要:隧道工程为缩短公路里程、减少大坡道而修建的下穿山岭的工程,它对于公路交通正常运行具有关键作用。文章主要针对乐广高速中大瑶山一号特长隧道工程施工中出现的质量问题和解决对策做详细分析。
关键词:高速公路;隧道工程;质量控制
1工程概况
乐昌至广州高速是京港澳高速公路粤境段复线,它促进粤北地区与珠三角地区的经济联系。其中T4大瑶山段起讫桩号为右线YK33+350~YK40+270,左线ZK33+350~ZK40+275,路线长(以右线计),按双向六车道高速公路标准建设,主线设计速度100Km/h,合同工期30个月。共有3个隧道工程,一号特长隧道左线长度4257米,右线长度4220米,为双向6车道,于20xx年12月份开工,20xx年7月份顺利贯通。
2公路隧道施工的特点
由于我国山地面积较大,高原、丘陵、山地面积占到我国总面积的一半以上,为了合理的避免山体阻碍正常交通,多在高等级公路建设中遇到山岭时,多采用隧道工程穿越山岭,从而有效地缩减公路里程,优化线路线型,并可以很大程度上避免山区公路出现塌方、滑坡等灾害。同时,采用穿山隧道还可以减少对山体表层植物的砍伐破坏,提高对生态环境的保护。此外,在修建跨海、跨河的公路时,为了最大程度降低对河流、航运的影响,确保海运正常通行,通常也采用水下修建隧道形式。根据笔者多年施工经验发现,在公路隧道施工中具有以下几项特点,具体如下:第一,隧道施工是在原始应力场中进行开挖施工,即隧道施工过程是先有荷载,然后再有结构;第二,在隧道工程施工过程中,其结构受力存在不确定性,其受到支护形式、开挖方式、支护结构等多方因素限制;第三,在隧道设计中主要以参照类似工程为主,用设计软件计算为辅,施工中不可预见的影响因素较多,因此需要加强动态设计;第四,因隧道工程处于地下,施工作业面较小,加之各工序交错进行,各工序间干扰较强;第五,开挖空间环境较差,作业空间内能见度较低,施工噪声较大,对施工人员的施工技能和施工情绪产生一定程度的影响;第六,工程多是隐蔽性质,在工程施工完成后,无法直观对施工质量进行准确评价,质量隐患很难直观发觉,且直观发现的问题很难判断质量问题的原因。
3公路隧道质量管理中的不足
3.1注意初期支护作用的应用
在隧道工程施工中多采用新奥法施工,其主要是利用隧道围岩结构的稳定性,并在开挖后及时支护结构,从而使初期支护结构与围岩一起承载上部荷载,减小围岩变形,并在后续开挖施工中加强围岩变形、沉降观测等。但是在本工程施工中,由于喷射混凝土不及时,即喷射混凝土出现延迟现象,从而直接影响隧道围岩结构的稳定性,并给后续开挖施工留下很大的安全隐患。同时,由于初期喷射混凝土滞后,造成混凝土随围岩变形大而结构密实性差,降低围岩结构与隧道支护结构的共同受力,易导致初期支护结构中出现分层,影响隧道结构的稳定性。
3.2隧道二次衬砌质量问题及质量缺陷
隧道二次衬砌施工质量对结构的稳定性、防水性有直接影响,但在T4大瑶山一号隧道二次衬砌施工中发现以下几项问题:第一,防水板完整性较差。在现场检查时发现防水板搭接部位不牢靠,且局部地方存在漏焊现象,甚至在焊接钢筋时存在烧伤防水板现象,影响防水板的防水效果;第二,钢筋网布置质量较差。针对布置钢筋网进行检查,发现局部区域钢筋层距不均匀,且钢筋保护层厚度不均匀;第三,喷射混凝土质量差。衬砌外观存在麻面、粘模现象,混凝土外观颜色不一致,流水波纹较重;第四,混凝土浇注过程中存在离析,有漏浆现象;第五,砂砾质量差。现场用砂,粒径偏大,直径达到~,且夹有圆砾,影响混凝土浇筑质量。
4加强公路隧道施工的质量管理
4.1加强对公路隧道断面开挖质量控制
为确保隧道断面开挖施工质量,需要做到以下几点:第一,加强人员质量责任心。在公路隧道工程施工中,施工人员作为工程参与者,若其施工质量责任心不高、施工技术不足,很容易造成隧道工程施工质量存在隐患。因此,在工程施工前,需要加强施工人员培训,针对性隧道工程的施工特点做专业施工培训;第二,加强隧道断面沉降、变形监测。在隧道开挖施工过程中,由于隧道开挖后,上部结构处于悬空状态,会随时间发展而出现沉降,因此,需要在开挖隧道后,及时对隧洞围岩结构稳定性进行实时动态监测。同时,在开挖过程中要遵循“短进尺、弱爆破、勤量测、强支护、紧封闭”的基本原则,并通过监测数据,修正爆破参数,有效地避免隧道超挖或欠挖现象,确保隧道围岩结构的稳定性。此外,加强对施工设备性能检测,并及时进行维护。因为隧道施工机械维保工作具有其独特性,维保时间、维保地点不容易管理和控制,所以要把每台设备的维护工作落实到个人,建立岗位责任制,谁保养谁负责的原则,这样就可以提高工作的灵活化与积极性,还可以提高维修保养人员的责任心与工作效率。
4.2实现对初期支护的有效控制
为确保隧道开挖后围岩变形控制在合理范围内,需要及时采取初期支护。需要做到以下几点:第一,严格按照规范要求架设钢拱架,增加围岩的稳定性;第二,严格控制锚杆加工、安装质量,例如,检查锚杆的长度、抗拉性能,并在安装后检查锚杆的安装质量是否满足设计要求;第三,加强原材料进场检查工作,对喷射混凝土施工进行有效的控制,避免出现喷射混凝土出现厚度不均匀现象。
4.3二次衬砌的施工质量有效控制
针对本工程二次衬砌施工中出现的质量问题,需要采取以下解决措施,提高隧道工程施工质量,具体如下:第一,针对防水板质量差,项目部需重视施工过程中的精细化管理工作,克服不良施工习惯,同时技术人员及现场监理人员要提高工作责任心,需要对防水板的每条焊缝采取严格质量检查措施,发现问题及时进行补焊;第二,为确保钢筋保护层厚度均匀,需要提高钢筋的焊接和安装质量,特别是边墙与仰拱处弯曲部位钢筋的弧度,确保钢筋保护层厚度,提高保护层合格率。同时,为确保钢筋钢筋骨架的整体稳固,项目部应做好测量放样工作,每板设置3-4个标准断面;保护层垫块安装后应进行湿养,避免过度吸浆产生空洞;第三,注重施工材料质量。在二衬混凝土浇筑施工前,需要对水泥性能、砂、碎石原料进行质量检测,确保砂含泥量、碎石级配在规范允许的范围内。同时监理中心室应配合项目部工地试验室,做好混凝土和易性检测,确保进仓前混凝土坍落度满足施工要求;第四,针对混凝土浇筑质量。若发现混凝土出现离析现象时,要及时采取措施进行处理,确保浇注过程中混凝土质量。在浇筑混凝土时,为确保混凝土连续进行施工,需要配备备用泵送机。同时,二衬混凝土浇筑完毕后,应在12h以内对混凝土进行洒水养护,且在混凝土强度达到5MPa前,不得私自拆除堵头模板。且在拆除模板后,严禁对混凝土表面进行装饰,以避免进行不必要的质量验证,确保颜色均一。
5结论
综上所述,在大瑶山一号特长隧道施工中,需要加强对初期支护、二次衬砌等施工的质量控制,确保隧道工程施工质量满足设计要求,提供隧道结构的稳定性。
市政隧道论文范文高中 第7篇
本文拟结合北京地铁10号线车站的工程背景,引用相关文献提出的刚度折减理论,探索对结构损伤缺陷的简化描述;同时基于数值模拟仿真,研究其在不同运营阶段的地震动力响应规律。目的是为了揭示地铁隧道在疲劳损伤积累作用下的抗震动力学机理,并为进一步合理地改进和优化地铁隧道等地下结构的设计和施工、地下结构抗震设计规范的制定提供一定的参考依据。
初始损伤缺陷的描述与长期累积效应表达
根据相关的试验及文献研究,在长期的荷载及环境腐蚀等作用下,结构的劣化过程是由于诸如微裂缝、微孔洞等这样的初始损伤缺陷随运营时间的增加在不断发展,最后导致结构失效。事实上,对于既有地铁隧道而言,引起结构初始损伤缺陷的因素是多方面的,初始损伤缺陷的定义也是多方面的。例如,可以定义为施工质量方面导致的初始缺陷、工后运营过程中由于沉降导致的初始缺陷以及受邻近或穿越施工影响带来的初始缺陷等等。为了保证隧道结构在运营期间的安全,地铁隧道结构在长期运营动载作用下随时间的动力响应及初始缺陷的演变机理在不断得到人们的关注,尤其是初始缺陷长期累积作用下结构的抗震动力学行为。这里不妨采用前人文献试验研究,采用刚度折减理论来体现隧道结构衬砌初始缺陷及其在列车不同运营阶段的抗震动力特性。
力学模型与计算参数
1工程背景
本文以10号线双井车站由于列车振动所引起的隧道衬砌结构的动力响应为研究背景。10号线双井站为地下三层两跨(局部三跨)岛式站台车站,全长181.0m。车站地下一层为设备层,地下二层为站厅层,地下三层为站台层。车站南、北两段为地下三层明挖结构,中间段为地下一层暗挖结构。在图1中可以看出,北侧三层结构与中间暗挖段及中间暗挖段与南侧三层结构之间均有宽20mm的变形缝。由于变形缝的存在,因此,构想以变形缝为界,只考虑对双井站中间暗挖段结构衬砌进行动力响应分析。此举目的在于,变形缝起着减振的作用,三段结构彼此振动影响不大;建立模型时能使计算单元的数量大大减少,即提高了计算运行速度,又能得到较理想的计算精度。
2基于FLAC3D地震响应的三维模型的建立
考虑到边界效应和地下结构开挖所影响的范围,整体模型截取范围为61.3m×59.24m×41.55m的土体。网格大小划分满足Kuhlemeyer和Lysmer通过模型的波传播精度的表达式,就是单元的空间尺寸ΔL,必须小于与输入波的最大频率相应的波长的1/8~1/10。10号线双井站模型示意图如图2所示。
3模型边界条件及计算参数的确定
根据北京地铁10号线双井站的地质资料,将土体视为均匀介质,并取土性参数的加权平均值作为计算参数。计算中采用不同的本构模型模拟不同的材料,对于各层土体采用莫尔-库仑(M-C)本构模型,隧道衬砌应用线弹性本构模型。衬砌混凝土力学参数如下:密度为2.5g/cm3,剪切模量为15.28GPa,体积模量为11.46GPa。静力计算时,模型四周分别约束相应的水平向位移,底部为竖向固定、水平自由的边界,上表面为自由边界。在设置动力边界条件及阻尼前,应将静力计算模型中的初始位移及初始速度设置为0。动力计算时,在模型四周边界上施加自由场边界条件,底部边界取为静态边界,上表面为自由边界。模型采用瑞丽阻尼机制,使用时需要考虑两个参数,即自振频率和阻尼比。自振频率的确定是使模型不设置阻尼,在重力作用下求解一定的步数,使模型产生振荡,分析模型关键节点响应,使其完成至少一个周期振荡。本文求解的振荡周期为0.09s,由此计算出自振频率为11.11Hz。阻尼比的确定是根据经验方法,选取岩土体的阻尼比参数为0.005。
4地震波的选择
因工程建筑场地类别为Ⅱ类,且北京按8度设防,所以本文采用比较著名的埃尔森特(EICEN-TRO)波,截取包括峰值加速度在内的5s段进行分析,峰值加速度为1.96m/s2,满足_颁发的《关于统一抗震设计规范地面运动加速度设计取值的通知》规定的8度设防取0.2m/s2加速度峰值的要求。由于输入的EI波为频率范围很广的离散载荷形式,因此在地震反应分析中对EI波中的高频波进行滤波处理,以提高计算精度。图3为滤波前后加速度时程曲线的对比图。本文采用地震过程中对结构破坏最大的横波(X方向传播)和纵波(Z方向传播)共同作用于地下结构进行抗震性能研究。依据抗震设计规范中规定的水平向地震荷载设计谱乘以某一固定系数作为竖向设计抗震的说明,本文取竖向设计荷载为水平向的2/3。
地震动力响应分析
考虑在不同阶段下的3种工况对地铁车站结构进行抗震性能分析。在大量隧道震害调查中,发现隧道拱顶、拱肩及仰拱位置为薄弱部位,因此选取地铁结构衬砌的拱顶、拱肩和仰拱的X,Z方向位移和应力进行全程监测,研究在地震荷载作用下各运营阶段的位移、大小主应力的时程曲线规律。
1位移时程分析
采用刚度折减理论对不同运营阶段的隧道结构进行动力响应数值分析,部分结果如图4~图6所示。数值结果表明,隧道结构各控制点的位移波动趋势具有极大的相似性,说明了隧道结构在地震动力作用下的整体性;位移曲线和地震波的波形基本一致,因此时程曲线主要取决于输入地震波的特性;各控制点的竖向位移比水平位移要小,这是因为输入的竖向地震动加速度小于水平地震动,并且竖向变形受到土体及结构自重的约束较为明显;在3种不同刚度下,各控制点的位移均呈现出随刚度的减小反而增大的趋势,如在水平地震作用下,100%刚度下控制点(拱顶)的位移最大值为0.151m,80%刚度下变为0.154m,65%刚度下为0.157m,较100%刚度分别增大了1.9%和3.9%,这说明经长期损伤积累致使隧道衬砌刚度减小,增加了隧道变形破坏的风险。
2应力时程分析
在地震动力响应作用下,可以得到不同刚度条件下隧道结构在列车不同运营阶段的大小主应力时程效应,部分结果如图7和图8所示。数值结果表明,在列车运营不同阶段即不同刚度下应力时程曲线呈现出随刚度的减小而随之减小,但各控制点时程曲线趋势一致,可见,刚度变化与其曲线变化趋势无关。其中在80%刚度及65%刚度时拱肩的最大主应力分别较100%刚度下降了9%和15%,而最小主应力分别下降了4.7%和9.9%;仰拱的最大主应力分别较100%刚度下降了1.6%和5%,对应的最小主应力分别下降了2.9%和6.7%;拱顶的最大主应力分别较100%刚度下降了8.3%和18.6%,同时最小主应力分别下降了4.4%和8.7%。可见,各控制点随着刚度的减小而出现不同程度的内力衰减,最大主应力及最小主应力均为负值,说明各控制点以压应力的形式出现;柱顶随刚度的衰减其表现形式最明显,主应力时程曲线随着刚度的衰减均比其余控制点应力时程曲线差异明显,说明刚度的大小对柱顶的内力影响最大;从大小主应力的表现看,仰拱所承受的内力应是最大的,因此此处是车站在地震作用下易出现应力集中导致破坏的位置,应进行注浆加固等处理措施,使其与自身结构刚度相匹配,提高抗震能力。
3塑性区分析
在静载或者动载激励作用下,车站结构周围土体破坏导致其所受影响最为直观的表现为土体产生下陷、震陷、隆起表错、甚至塌方等现象,在数值模拟计算中较为直观地表现出其周边土体破坏程度大小的为该模型的塑性区大小。其中图9中none表示始终处于弹性状态;shear-p表示弹性,但之前曾剪切破坏;shear-n表示正在剪切破坏。在车站结构3种运营阶段状态下即3种不同刚度下车站结构受震后周围土体的塑性区分布模型图如图9所示。由图9可知,车站结构周边土体出现了不同程度剪切破坏,并且主要发生在车站结构周边及地面附近区域;在3种不同刚度下,其车站周边土体塑性区随着刚度的减小而减小。这说明隧道衬砌刚度越小,则与其周边土体的刚度越加匹配,两者产生了相对变形,使其更难到达塑性变形。也就是说,隧道衬砌因刚度的减小而产生变形增大,增加了其变形破坏的程度
市政隧道论文范文高中 第8篇
关键词:隧道环境
沉埋隧道的特征一座沉埋隧道具有两项基本特征:(1)它是某一地下结构场地的一部分,要在繁忙的交通条件下保证施工,而并不意味这个地区是被充分地利用了的。因此,施工空间是很宝贵的。
(2)它基本上是一预制结构。
最终将安装在河流或运河底部位置的隧道管段是在其它地方以非常接近工厂条件的方式筑造的,这种条件在现场和工地是不大可能达到的。施工规划上的优点和将管段制造与工地准备分开进行在后勤上的优点是显而易见的,还有极易于实现有效的质量控制的优点。
隧道工点在环境上的影响同样也大大少于隧道完全都在现场施工的情况;如像空间的需求和施工运输,这两个问题就大大的缓和。
当然,这些优点的先决条件是有现成的可用于管段制造的适宜工地。它必须满足一系列有关环境影响的条件。在如荷兰这类人口密集的国家里,要找到合适的工地很不容易,而且很显然,一旦选定一可用位置,可多次使用就相当引人。因此,隧道施工的总体规划是一个供讨论的普通主题。
两端的地下结构一座新隧道连结到原来既有的地下结构中去,往往实际上是取代一既有的跨越水域的设施,如轮渡或桥梁。它也可为一既有隧道或桥梁的补充设施。无论决定建造一新隧道的理由如何,它的位置将在很大程度上受到既有地下结构布置的制约,而且其施工设计也要满足现有交通运输只受最小程度干扰的要求。这就意味着设计人员在隧道位置方面很少有选择的机会,因而不得不根据这一既定位置的条件和要求来修改隧道设计。
这一情形主要影响连接隧道本身的引道部分。然而,因为引道由穿过含水地层的分段组成,就有可能要求用新的措施以控制引道建造基坑排水影响的范围。
引道沉埋隧道几乎总是位于沉积地带,在那里,隧道引道降到地下水位以下。在其完成时,它们是不透水的结构,周围的地下水不能渗入,存在的仅是单纯结构性质的环境影响。
然而在施工期间,环境问题则起着重要的作用。为了建造起结构物,必须开挖一施工基坑直至地下水位以下若干米的深处,传统施工方法要求在施工期中持续不断把水排干。除非采取进一步的措施,否则排水势必降低周围地区的水位,而且会导致一系列不希望的后果。沉陷将发生,周围楼房和建筑物的基础将受到影响,而且甚至深桩基础也将受到沉陷土体经磨擦传递至桩上的额外向下荷载。由于沉陷而堤坝高程下沉,而且农业地区的排水水位将会受到影响。
还有可能造成一种性质完全不同的环境问题:施工区域内的泥土可能被污染。在这种情况下,施工基坑的开挖就要求格外注意,而且如有可能,就要采用诸如将泥土与水混合后经管道水力输送的特别方法。还必须有一个经批准能容纳被污染泥土的地方。
必须采取若干措施以防止由于抽、排水而造成被污染泥土迅速分布到大面积地面上。
在技术上,总是可能消除这些各种各样的影响。然而,由于做起来极为复杂而且会花费大量资金和时间,因此,目前倾向于寻找尽最大可能在水下建造引道和隧道进口的方法。最理想的是,排空施工基坑中的水应该是一排干整个引道又完全不影响周围地下水位的单项作业。
明显的结论就是尽可能将施工基坑设计成最终产品的一部分。
引道边墙可设计成像有不透水芯墙的堤坝,其形式有泥浆墙、塑料板围幕或是常见的钢钣桩墙。对最后一种形式(钢钣桩墙)(通过使用重型断面板桩和土锚)增加其挡土的功能,就可节省有价值的空间,而且可容易地达到在水下与不透水底板的连接。
底板可以用水下混凝土建成。这种方法已发展到能控制其高程和表面平整,以致达到在引道完全排干以后,只需要较少的修整工作。
另一种方法是采用不透水的塑料板材,加镇重安放于水下以盖住基坑底部和边坡。在荷兰,这种方法不仅用于隧道的引道,而且用于公络的凹槽段。
使用大面积的塑料板材,以泥土作镇重安放到水下,用在一主要公路交叉口起到了长期的良好效果,它表明此技术已经推广使用。不久,荷兰的隧道引道可能会向人们展示有茂盛的绿色边坡,从而取代了灰色的混凝土竖墙。
引道也可在别处预制并以浮运构件的形式安装。此种方法只需用疏浚船开挖沟槽而完全不必排水。不过目前还没有能充分处理浮力作用和基础问题的适宜设计。
管段制造上述对地下水与引道开挖之间的关系的讨论大部分都可以同样的方式应用于制造管段临时场地的开挖。昂贵的解决办法给工程带来不合理的负担。而且,这个制造管段的场地必须多次被附近的开阔水域淹没并打开以使预制成的隧道管段运至船坞处以便为另一些管段让出地方。很少会有足够大的地方可供一次制造所有的管段。
总之,由于选择制造管段船坞的位置不像选择隧道引道的位置那样要严格地用功能要求来决定,故选择制造管段船坞的位置具有可以灵活的优点。因此,制造船坞也就可以允许使用传统的排水法,如果由于上面列出的理由认为不允许使用传统的排水法时,而船坞又不得不与周围地下水分隔开时,这种地方使用不透水塑料板法由于其费用低就具有明显的优点。
另一种不影响周围地下水位的排水方法是_抽水回灌法_此法乃将渗入基坑的水用泵排出,又用泵将这些水通过过滤井管回灌到水的来源区。只要渗透速度不是太大而且可保持大致是个常数,这个排、灌时闭路循环就可以保持。这个新的措施,现在正用在荷兰的一个扩大的引道施工坑,由于这个基坑又要作为制造管段的船坞故加以扩大。
基槽的建造沉埋隧道的构槽是用疏浚法开挖的。在本文中,我们只强调用疏浚法开挖基槽的要求能达到极高的精确度,而且这个要求将决定最适合这一工作设备的类型。鉴于严格的定位容差,最好采用锚定疏浚船或在定位桩上的疏浚设备。不过,由于它们不能自由移动,就可能成为船只航运的障碍。
假如在浚挖区域有水流或浪潮的影响,浚挖的基槽就会成为水流携带或沿河底推移的沉积物的积存处。如果基槽开挖后长期不放置管段,就会很快形成淤积。在上述情况下,基槽开挖和隧道管段安装两工序的相隔时间必须越短越好,因而对这两道工序的安排都需格外准确,可以采用一种专门的设备于安装管段之前清理基槽。在荷兰,这种操作目前已发展到用在东斯格尔迪特(EasternScheldt)防风暴海浪堤坝的墩柱安装中达到很高精度。
疏浚搅起了河底沉积物,造成在一定时间一定区域的河水浑浊。最终这些成为悬浮的细颗粒物质会散开并重新逐渐沉淀下来。尽管这一过程对环境的影响有限,而且无害,但在一定范围内还是日益受到强烈的抨击。
如果要浚挖的泥土是已被污染的,事情就更为复杂化,因为在这种条件下,浚挖作业就会使污染扩散。现在浚挖技术已发展到通过使用一种专门的汲泥头来消除这一影响。采用从浮船上下悬帘幕将浚挖区域与周围完全隔开的方法也可减少污染扩散。
在这一方面的进一步发展目前大家都注意到,在荷兰大部分水道底部都含有被污染的沉积物已很明显,因而浚挖这些泥土必然要承担一些特别的环境要求。
当前,这些要求尚未统一形成,而是针对每一具体工程提出不同的要求。希望这种拖延关键技术发展的混乱局面能迅速得以解决。
根据污染的类型和程度,可将被污染泥土分为1~4类。对于浚挖泥土(包括浚挖过程中的工艺用水)的弃置都按分类受到严格的限制;尤其是3和4类泥土都必须与外界隔绝,而且在可能的情况下加以净化。
在鹿特丹地区,已建成了一座储放这些固体废物以及其它有害物质的中心堆集场。此外,第4类浚挖弃土被放在临时的较小的堆集点,待其被净化后再转放至别的隔离存放处。在没有这类设施的地方,就必须按浚挖工程建立这种堆放点。这一措施很明显需要做大量的工作。
管段的运输和安装疏浚工作和对航运的阻碍都是管段运输和安装带来的环境问题。要打开管段制船坞和加深船坞与安装点之间航道的浅水域就需要浚挖作业。前面有关浚挖的一些论述也适用这一情况。
安装工序中有一特殊的方面有可能涉及隧道基槽的最后清理。为了使清理和安装两工序间隔时间缩至最短,在管段安放到其最终位置底部回填砂之前已成功地采用了射水法清理隧道管段基底。用强力射水把要清除的最后一层沉积物冲成悬浮物,随后被水流带走。
在管段离开制造船坞,锚泊在临时码头和离开临时码头,浮运至安装点以及安装期间都有可能阻碍航运。只有最后一道工序才会造成航运在短期内临时完全中断或部分中断。
在这个方面,一座沉埋隧道穿过一条河流与穿过一条运河存在着差别。在后一种情况下,由于没有水流影响,就使得在沉放和安装用可更好地控制管段。这种控制上的有利,就允许沉埋管段隧道采用更长管段单元,但这必须有足够大的制造船坞。
所以在荷兰,以往绝大多数沉埋隧道的管段单元长度都在100~150m之间变化,在跨越阿姆斯特丹和海域间北海运河的赫姆隧道(Hemtunnel)工程中还用了长达268m的管段单元。使用较长的管段单元减少了安装作业的次数,从而也就减缓了对航运的阻碍。
对于沉埋管段隧道工程来说,妨碍航运似乎很适合定为一环境问题,但并不是一个重大问题。
回填这道工序包括用砂回填管段基底部,回填塞槽,以及必要时于管段顶部建造一冲刷防护层。
回填材料必须是未被污染的。作业船在隧道上面施工时将干扰航运。不过,通过用安装在隧道管段内的设备进行部分作业,就能减少这类麻烦,譬如经穿过隧道底部的孔口泵送砂、水混合物来回填等。这一系统已在荷兰成功地应用过。
运营和维修涉及隧道运营的主要环境问题是通风。
市政隧道论文范文高中 第9篇
高速公路隧道机电消防系统对于整个高速公路的正常运行有着非常重要的意义,一旦隧道机电消防系统出现问题,很可能造成火灾隐患等,影响高速公路上的行人和财产安全,因此,在高速公路快速发展的社会背景之下,我们一定要对高速公路隧道机电消防系统工程予以足够的重视,通过其具体实现等来确立相关的工程建设标准,最终达到促进高速公路隧道工程科学建设、安全运营的目的。
1、高速公路隧道机电消防系统工程建设的原则
高速公路隧道机电消防工程要能够实现对火灾的检测、发现、报警和消灭四个方面的内容,避免对火灾的检测失灵、发现失败、报警缺失以及消灭不力而造成的人和物的损失。
高速公路隧道机电消防工程要以机电自动化实现为主,人力配合为辅。高速公路隧道一般都离市区等较远,相关运行以及监控人员等很难对其进行现场管理,因此,就需要高速公路隧道机电消防工程实现高度的自动化运行,将火灾隐患降到最小。
高速公路隧道机电消防工程要坚持因地制宜原则。隧道消防机电设备的选择、机电工程的布置、用水系统的设置等要根据当地的实际环境来因地制宜地选择,以能够实现最佳地消防效果为最主要目的。
高速公路隧道机电消防工程要坚持易维护的原则。高速公路隧道机电消防系统的维护也是工程建设时需要考虑的一个重要内容,因为只有及时进行有效的维护,隧道机电消防系统才能够保持在最佳的运行状态,才能够及时发现消防问题并进行处理等,因此,高速公路隧道机电消防工程要坚持易维护的原则以保障消防系统的运行效果。
2、高速公路隧道机电消防系统工程的建设实现
高速公路隧道消防水的设置。消防水的设置一般可以通过在隧道顶部设立消防水池和设置水井的方式来实现,这两种消防水的来源各有优势,可以根据具体环境来做选择。对于有自来水通过的地区,可以通过设置消防水池的方式来保障隧道内消防水的供应,对于无自来水通过的地区,可以通过挖掘水井的方式来为隧道供应消防水。
高速公路隧道消防管道的设置。消防管道的布置应该根据隧道所在地的实际情况考虑防冻问题,以使消防管道能够在恶劣的环境下实现正常使用,避免因为消防水出现问题而导致消防隐患。消防管道的布置必须要设置于检修道上,这样,在后期的维护过程中,就能够实现对消防管道中存在问题的及时发现和弥补,避免消防管道出现漏水等问题影响后续的使用。
高速公路隧道消防水泵设置。消防水泵的设置应该坚持使用与备用相结合,并且对使用中和备用的水泵都要进行妥善检查,以确保其都能够随时正常使用。消防水泵应该融自动与手动一体,日常进行自动控制,自动控制不灵或者出现异常情况时切换至手动控制。监控中心要实现对水泵运行状况的实时监控和记录,包括其开启、运行、停止以及低频巡检过程,对于任何一个环节出现监控异常的,要及时进行问题排查,以保障水泵处于正常运行状态。同时,实现对消防水池水位的实时监测,水位等于或低于最低线时,自动供水保障水位处于最低线和最高线之间,以满足消防用水的需求。
高速公路隧道消防洞的设置。高速公路隧道消防洞应该根据隧道的实际情况进行合理布置,每个消防洞都应该配置消防栓以及灭火器,以供隧道的使用者在发生火灾时使用。同时,消防洞的间距应该根据消防隧道的长度以及消防难度等来进行合理设置,确保在发生火灾时消防系统的使用人员能够及时地找到并且方便地使用消防工具对火灾进行控制。
高速公路隧道消防火灾检测系统和报警系统的设置。在当前火灾检测技术快速发展的背景之下,火灾检测系统主要是基于火灾发生之后产生的烟、光和热等来判断火灾发生的,同时还有一种能够根据现场的图像判断火灾是否发生的系统。两种系统在判断火灾发生的准确性上区别不大,所以在高速公路隧道消防系统中可以根据实际需求和预算状况等自主选择和安装火灾检测系统,实现对火灾的智能检测。火灾检测之后,需要及时进行自动的报警,如此,才能够实现对火灾的及时有效的控制,避免人力物力的损失和浪费。火灾报警系统与火灾检测系统相连,火灾检测系统一旦检测到火灾的发生,就需要将火灾的具体情形自动地报告给监控室,以方便监控室能够根据实际情况安排消防。同时,火灾报警系统还需要与隧道外显示屏相连接,以警告过往车辆不再进入隧道内并且自动协助灭火等。这样,就实现了隧道内火灾和报警的一体化设置,有效地减轻火灾造成的损失。
3、结语
高速公路隧道机电消防系统是一个从消防水的布置、消防水管道设置、消防水泵的自动运行、消防洞的合理设置到消防问题的检查与预警融为一体的完整系统。这个系统需要在设置之初就进行周密的考虑和合理的布置,以使安装完成的消防系统能够在日常实现自动运行,并且能够方便维护人员进行有效地检修;在产生消防问题时,机电消防系统能够及时地发现存在的问题,并且对问题进行合理的评估、记录以及及时上报,这样就能够保证消防问题的及时解决;消防预警系统则需要在实现消防问题上报之后及时向过往的车辆发生预警,以使其不要再进入到隧道之内、及时躲避、在必要的时候给予协助等。这样,高速公路隧道机电消防工程就能够实现标准化运营,及时发现消防隐患,将消防损失减少到最小。
市政隧道论文范文高中 第10篇
项目主要工程内容包括主隧道及隧道出、入口路槽明挖段线下工程:
1)隧道为分离式铁路单线隧道,由2个4.625km的主洞和18个横通道组成,单个横通道长约17m;隧道施工总长9556m;
2)西口明挖段长约1165m,主要为石方开挖及挡墙工程;
3)东口明挖段长约960m,主要为钻孔桩挡墙、土方开挖以及一座抽水泵房工程;招标文件规定可以选择钻爆法、TBM工法中的其中一种来进行报价,通过经济技术比较分析,选择了钻爆法。
2项目合作模式
设计施工总承包模式在国外较流行和成熟,而在我国正处于推广阶段。采用设计施工总承包模式可以使得设计方案更贴合实际施工,有效地控制投资,在一定程度上能减少变更设计和设计、施工交流不畅的问题,并可以取得缩短建设周期、降低建设成本、提高工程质量的综合效果,还可使业主免于处理各种复杂的协调关系,因此在国际上广为流行。设计施工总承包要求承揽单位应同时具有相应的设计和施工资质。目前我国同时具有设计和施工资质的企业并不多,因此参与国外项目投标一般采用联合体模式,由两家或两家以上单位优势互补。该项目投标采用了国内惯用的联合体投标模式,为了减小国内大量劳务人员输出的难度,对一些分项工程或者专项工程进行了分包,构成了一个复杂而系统的设计施工总承包模式。特别注意的是,由于分包单位众多,同一条隧道的不同施工工序由不同单位完成,工作面矛盾、施工组织冲突等问题需及时协调,因此中标后总承包单位的协调、组织工作需尤其重视。该隧道项目采用中方公司———A公司与外方当地公司组成联合体的合作模式。A公司与一家以色列公司组成联合体共同管理项目,中外双方在联合体中所占股份50%∶50%。
3合同单价的调整和工程量清单特点
报价方式分总价合同方案和单价合同方案,该项目采用了单价合同方案。由于该项目拟定采用的隧道工程的施工方法为NATM(钻爆法),投标报价阶段仅能获得招标方提供的粗略的不同岩石长度和岩石质量分级,不能保证施工中实际情况完全与之相符,为了方便后期施工中变更设计或者索赔工作的进行,因此该项目投标采用单价合同方案。合同额将来会根据围岩质量情况进行相应调整,好的岩石会减少延期付款,差的岩石业主会追加付款。另外,在投标报价过程中,该项目的工程量清单与国内的工程量清单有一些不同之处,以色列的工程量清单相对来说比较粗。例如,在土方开挖部分,以色列的工程量清单会显示每单位长度的价格,而国内的工程量清单则要详细很多,分为土方开挖、出砟运输、支护、排水、爆破等等分项,分别给出价格,最后整合出单位长度的价格。
4项目重点及难点
以色列的很多基础设施项目均采用欧美等发达国家的规范与标准,项目标准要求高。该项目也不例外,其特点主要有如下几点:
4.1付款条件
该工程工期控制紧,采用划分非常详细的里程碑付款。该项目按照里程碑事件申请付款,申请45天后的每月10号或25号付款。该项目总工期39个月,里程碑划分如下:
1)完成三个阶段的设计,共计价3次;
2)根据进洞需要完成洞外工程并完成隧道50m开挖支护,付洞外工程,共计价4次;
3)完成东西明挖段的开挖挡墙工程和完成全部明挖工程,共计价4次;
4)单洞每开挖385m计价一次,共24次;
5)防水及二衬每完成490m计价一次,共19次;
6)混凝土底板每完成925m计价一次,共10次;
7)连接横通道每完成一座计价一次,共18次;以上合计83个付款里程碑。且根据不同的施工方式,每个里程碑付款的比例会有所不同。
4.2工期奖罚及项目调价
在以色列实施项目,业主一般规定了非常具体的奖罚制度。该项目奖罚制度为:每提前一个月奖励合同额0.6%,上限为3.6%;延期完工罚款合同额每月1%,上限为5%。另外,以色列的项目调价制度有点特殊:80%付款根据道路造价指数调价,20%付款根据房屋造价指数调价。
4.3工程范围大,单位工程多,分包单位多,协调工作大
该工程涉及开挖、支护、出碴、二次衬砌、机电等单位工程,涉及设计分包商、开挖和支护分包商、二衬防水、二衬钢筋工程及二衬混凝土工程、土方及洞口明挖分包商等众多分包单位,有效的协调是工程顺利进行的关键。该工程隧道施工总长约9556m,沿线环境复杂,存在多处断层、地下水等施工难度较大地段,不确定因素多,施工风险高。
4.4必须保证混凝土的连续供应
在以色列,新建、在建工程,在施工现场架设混凝土搅拌机(现场设搅拌站)现场搅拌混凝土审批困难,而只能统一使用商品混凝土。此举可避免水泥粉尘和噪音污染,而且流水化作业生产制作,水泥质量稳定,可以大大提高工程施工质量。但这也给施工带来了一定困难,如商品混凝土的夜间及周末、节假日供应将影响项目工期及成本。经过项目部多日的协调,夜间及周六、节假日供应商品混凝土已解决,没有大的影响,没有额外费用。
4.5工人签证审批严格
但凡在国外承接项目,对于需要大量中国工人完成的项目,中国工人签证都是一个很关键的问题,必须妥善解决。以色列最近几年出台了一系列关于劳工的政策,对进入以色列的劳工有很多限制。该项目为了解决工人施工问题,通过申请专家签证,输出了有限的工人。这不仅限制了劳工输出的数量,且在很大程度上大大增加了签证和工人输出的成本(专家签证一年的费用比劳工签证高)。该工程为了解决工人缺乏的问题,在项目实施过程中,实行了多个单项工程的分包,与国际上其他国家的公司合作,从而很好地缓解了这一矛盾。
4.6爆破材料规定和限制
以色列爆破用品限制非常严格,所以在使用爆破用品时需要特别注意。
1)爆破材料的运输、处理、存储和使用需要根据相关法律进行,并需要经过劳工部施工监督项目经理和以色列警察的批准。如果以色列警察批准了爆破材料的存储,监督员有权到访施工区爆破材料的存储,并视察存储组织和保安。
2)对于进出存储的爆破材料,承包商需要保持连续记录和不断地监督所有数量的爆破材料以及附近的收发。项目经理或者劳工部监督施工的项目经理会,根据自己的决定,随机抽查这些记录。如果出现任何情况的偷盗,应立即通知警察和监督员。
3)项目经理对炸药操作的批准并不减免承包商对其雇员、监督管理人员、现场到访者或者过路人的安全以及整个施工和财产安全负责权的责任。任何由于爆破操作造成的对施工、公共财产、安装财产或者私人财产的损害都必须由承包商自己负责赔偿。
4)如果警察批准在隧道内存储炸药,那么存储在隧道内的炸药用量不能超过正常施工24h的用量,需要经过数量审查和经过劳工部监督施工的项目经理和以色列警察的批准。此要求同样适用于雷管、爆破加速器、导火线和其它进行爆破施工所需要的附件。
5)在隧道内存储炸药和附件以及存储细节需要经过劳工部监督施工的项目经理的特别批准。如果劳工部的项目经理或以色列警察不颁发这些批文,承包商无权向以色列铁路公司进行任何索赔或者要求。
6)在炸药存储区附近30m内不得安装变压器或者任何会释放火星的仪器。
7)出现闪电期间所有装药必须停止。
5结语
市政隧道论文范文高中 第11篇
为了对GPS高程拟合精度进行客观的评论,需要对所有的GPS点进行水准联测,在全网上均匀分布起算点,选择其他点作为检核点。在内符合精度方面,根据参与拟合计算已知点高程异常与拟合出高程异常求拟合残差;在外符合精度方面,根据检核点高程异常与拟合出高程异常间差值,计算GPS高程拟合的外符合精度M;GPS水准精度评定,根据检核点与已知点距离L计算检核点拟合残差限值评定GPS拟合高程达到的精度。
2数据介绍
隧道主要应用GPS进行控制网布设进行高程传递。对于控制点来说,由于需要进行拟合处理,在这种情况下需要的数据比较少。以某一桥梁为例,采用20个公共点对三次样条模型和移动曲面进行拟合分析,根据需要数据前四位省略,见表1所示。在数据类别方面,根据GPS高程拟合原理,可以将其分为起算数据、检核数据。其中,起算数据中的点一方面包含大地高,另一方面包含正常高,同时以此为计算拟合模型中的参数。检核数据是已知大地高,高程异常通过应用拟合模型进行计算,进一步获得正常高。本文中将11个数据点作为起算数据,9个数据点作为检核数据,具体分配方案为起算数据13个,分别为1、3、5、6、7、9、11、14、16、18、20点,检核数据9个,分别为2、4、8、10、12、13、15、17、19。
3数据解算结果及分析
分别对三次样条拟合和移动曲面拟合两种模型根据分配好方案进行数据拟合,三次样条拟合法比移动曲面拟合法效果更好一些,两种方法得到拟合结果值与已知各点高程异常值关系如图1。当多跨桥梁长度、隧道长度分别小于3000m、6000m时,通过移动曲面拟合法可以满足精度要求。对于三次样条曲线拟合,在应用过程中,需要注意X分量、Y分量对拟合结果产生的影响,在某些情况下,三次样条拟合出高程异常面会出现失真现象。对于多跨桥梁、隧道来说,当其长度分别超过3000m、6000m时,在这种情况下,通过移动曲面拟合法获取高程数据,在精度方面早已不能满足要求。对测区内一块宽1000m,长5000m区域采用三次样条拟合法和移动曲面拟合法进行高程异常拟合,结果如图2所示。通过对比分析两种拟合方法所得结果及拟合图形,同时结合三次样条和移动曲面拟合原理,可知三次样条拟合法存在一定的局限性,三次样条法拟合法与X分量或者Y分量密切相关,拟合结果受X分量、Y分量的影响,进而影响拟合结果的可靠性。
4结论
市政隧道论文范文高中 第12篇
施工监测
(1)联络通道的施工监测主要内容
①温度监测:盐水温度、冻结孔盐水回路温度、测温孔温度、泄压孔压力;
②隧道内及联络通道监测:隧道隆沉、隧道水平位移、隧道收敛变形、联络通道结构隆沉及收敛变形;
③周边环境监测:地表隆沉、管线变形、建构筑物变形;监测周期:联络通道钻孔施工开始至结构融沉注浆结束。
(2)监测范围
隧道内:联络通道两侧隧道管片左右各延伸20m,共40m。沉降点布设:在通道两侧20m范围内对隧道水平及垂直方向的收敛变形及施工影响范围内的隧道整体进行监测。沉降监测点布设在隧道底环片上,测点间距为,测点用道钉打入环片内牢固。位移点布设:位移监测点布设在隧道两肩的环片上,测点间距为,测点用道钉打入环片内牢固。隧道收敛监测点布设:监测点布设在上、下、左、右隧道壁上,用红漆做好标记。周边环境:联络通道正上方地面投影中心为圆心半径至少20m范围内。周边环境监测点布设:地面有建筑时应结合地面建筑物、管线情况增加布点。布点间距横向由联络通道中心向两侧2m、3m、5m、10m布设各监测点,布点间距竖向由联络通道中心向两侧4m、4m、5m、5m布设各监测点。
(3)监测要求
1)在两条隧道内均应设置测温孔监测冻结壁厚度、冻结壁平均温度和冻结壁与隧道管片界面温度,测温孔(点)应布置在冻结孔间距较大的界面上或预计冻结薄弱处。
2)在测定冻结壁与隧道管片界面温度时,应在界面内外两侧各布置1个测温点,通过差值方法确定界面处温度。
3)联络通道工程必须实施24h监控。监测单位应严格按监测方案实施对联络通道工程的监测工作,加强对监测数据的分析和异常数据的判读,加强对报警状态下数据传输的管理,确保监测数据的及时、正确、有效。
4)严格执行隧道联络通道冻结法温度监控、联络通道“工况图表”及设计图的要求,其中,联络通道“工况图表”实施工作由总监总负责,现场监测监控分中心各执行层(监理单位、施工单位和第一方监测单位)负责按时更新和上传相关的图表。详见附件。
5)联络通道专业施工队伍必须对联络通道施工全过程中可能出现的风险进行分析和策划,并对可能出现的风险落实防范或应急措施;联络通道工程施工前须进行防范措施或应急预案的演练。
6)施工监测应由监测单位编制专业监测方案,并经有关方面批准后实施。
二、联络通道监测监控标准化图表
联络通道除了严格按照施工组织方案进行施工外还要建立一套监测监控标准化流程,以确保联络通道在施工过程中和结构后期人员、通道和隧道结构、地面周边建(构)筑物的安全。遇到特殊情况不影响现场监测实施,能及时将监测数据提供各参建方。
工况图表信息化手段
联络通道施工过程中采取“工况图表”形式配合每日监测数据进行监测监控管理,工况图表主要包括联络通道施工主要冻结技术参数及钻孔特征表、冻结加固温度监测报表、联络通道周边环境及洞内结构监测布点图等。
(1)联络通道施工主要冻结技术参数及钻孔特征表、冻结加固温度监测报表
明确主要冻结技术参数及钻孔特征,建立监控施工过程冻结加固日报和抽检为手段的结构安全风险管理体系。钻孔的正确位置控制及冰冻过程中的温度控制是冻结法施工的关键参数,温度监测频率为每日一次,采用下列参数表格控制。包括的主要要素有:主要冻结技术参数、冻结孔特征、其他钻孔特征、参建单位及说明等。包括的主要要素有:工点名称、冻结天数、盐水设计温度、总去及总回盐水温度、冻结孔盐水回路温度、测温孔温度、卸压孔压力、监测单位、温控日期及时间等。钻孔时严格按照钻孔特征表参数进行施工;温度监测报表主要作用在于根据测温孔的温度,可以计算冻结壁厚度、冻结壁的平均温度,以及开挖边界上的温度是否达到设计要求,同时根据卸压孔压力的日常监测,判断冻结壁是否闭合。冻结温度要求:积极冻结7d盐水降至-18℃以下,积极冻结15d盐水温度降至-24℃以下(设计最低盐水温度高于-24℃时取设计最低盐水温度),开挖过程中盐水温度降至设计最低盐水温度以下。施工内支撑后可进行维护冻结,但维护冻结盐水温度不宜高于-22℃。开挖过程中,在保证冻结壁平均温度和厚度达到设计要求且实测判定冻结壁安全的情况下,可适当提高盐水温度,但不宜高于-25℃;开挖时,去回、路盐水温差不宜高于2℃。
(2)传统的联络通道洞内结构及周边环境监测布点图
针对联络通道洞内结构及周边环境监测布点图,我们在现场实施监测监控时,发现地表环境各测项测点数量能够覆盖通道开挖的影响范围,但是地表测点断面间距较短,测点数量较多,同一范围内数据容易出现冗余现象;同时隧道内结构监测点数量较少,针对靠近冻结区域的管片监测数据较少。
(3)优化后的联络通道洞内结构监测及周边环境监测点布置图
为了使各参建单位了解联络通道现场施工情况以及监测点变形情况,施工过程中采用以下图表进行安全风险管理控制。联络通道内部结构施工进度图包括的主要要素有:开挖与构筑平/剖面进度示意图、工程进度文字说明、参建单位及说明等;施工单位按设计图纸制作该图,开挖及构筑期间每日及时更新工况和工程进度,并及时上报给风险咨询单位和第三方监测单位。联络通道内部结构监测布点图包括的主要要素有:隧道沉降/拱顶沉降监测点、融沉期间结构沉降监测点、收敛监测点等。联络通道地面环境监测布点图包括的主要要素有:建筑沉降点、管线监测点、地表深层监测点、地表模拟监测点等;监测点布置图在控制范围、测点数量等方面进行了优化,既保证施工影响范围内的环境监测,又去除了冗余监测点,简洁、实用,可操作性良好。施工监测单位绘制,并报施工、监理、第三方监测单位审核,开工前一周左右上报给风险咨询单位和第三方监测单位备案。
三、结束语
市政隧道论文范文高中 第13篇
公路涵洞及隧道工程施工技术研究论文
1、工程概括
赤水至望谟高速公路黔西至织金段项目主要工程量如下:路基土石方776万m3,路基填筑578万m3,防护及排水工程万m3,涵洞及通道道,分离式隧道2890m/3座,互通式立体交叉3处,中、小桥座,大桥2567m/8座,特大桥座(钢构、斜拉桥),沥青混凝土路面万m2。由上可知,工程量较大,并且涉及到的桥梁涵洞工程较大,因此必须要加强对桥梁涵洞工程施工技术的重视,提高工程质量。
2、涵洞施工技术问题
盖板预制及安装
在赤水至望谟高速公路黔西至织金段项目中,公路盖板涵工程在具体施工中,盖板顶层覆土较厚,若在具体施工中,有重型车辆通过,在盖板上容易出现裂缝,最终将会对工程的质量造成不良影响。在预制盖板过程中,在加工主要受力钢筋时,端头的长度和角度都会对其造成一定影响。安装盖板时,底板隔离需要深入到混凝土中,从而最大长度降低钢筋与混凝土自两者之间的摩擦力,进一步降低主要受力钢筋与混凝土之间的摩擦力。
台背填土施工
台背回填是公路涵洞施工中质量控制作为薄弱的一个环节,在具体施工中,如果没有采取合理的措施对施工内容进行处理,导致回填处出现大范围沉降,将会引发严重的路基病害。例如,“吊车”、路面破坏、路基沉陷等。在具体施工过程中,引起台背填土不合理的原因主要有以下几点:
(1)原地面上的台背回填宽度并没有达到台高的两倍,回填材料与填筑材料压缩模量相比,存在较大的差异性。
(2)在回填过程中,分层填筑厚度与规定范围相比超出了标准值,同时由于回填材料的质量存在问题,导致施工中,压实程度无法满足相应的规定要求。
(3)压重时间不足,将会降低路面稳定性,通车之后有可能会导致沉降情况的发生,影响工程后期的使用效果,并且缩短工程的使用寿命。
3、解决涵洞施工的技术问题
盖板涵施工的合理性
盖板涵施工的流程见图1盖板涵的具体施工如下:
(1)严格依据施工图纸进行基础定位防线,依据工程的实际情况完成对中线、变现、标高的确定。
(2)基坑开挖,严格的依据技术交底、安全进行。如果在基坑开挖过程中采取人工的方式开挖深沟,在对施工环境检后,确认地线无管线后,可以利用挖掘机进行开挖工作,在具体施工过程中要避免超挖现象的出现,同时要确保边坡的`准确性,针对施工中深度超过4m的盖板箱涵基坑,针对边坡需要利用塑料薄膜完成相应的防护。在利用机械开挖接近设计的边坡边界或坑底标高时,应当预留的厚度层,采用人工配合的方式进行开挖。堆到基槽边200cm外,需要施工人员注意的是,高度要低于150cm。在工程施工中,做好对支撑和边坡的检查控制工作,施工中所使用的车辆的行走需要远离边坑,避免对工程的质量造成不良影响。
(3)基坑休整。在挖好基坑后,需要对基坑进行休整与抄平处理。
台背回填技术
涵洞工程中,在具体施工中针对量测均匀的涵台的锥坡和台背进行填土作业时,作业运输机械的选择要依据填土的具体厚度而定。如果涵顶填土厚度不大于50cm,在施工中不得应用施工机械或重型车辆,涵顶厚度接近100cm时,不得利用大型机械施工,同时也不得有大型机械行驶,以上内容都是台背回填过程红必须要主要的内容,在赤水至望谟高速公路黔西至织金段项目中施工中,加强对以上内容的注意,可以明显发现工程的质量与类似工程相比有所提高,由此可见注重以上内容对于公路涵洞工程的质量来说意义重大。此外,在台背回填压实过程中,对回台背填料进行分层摊铺,从而确保压实工作能够得到标准。在本次工程具体施工中,当填至设计标准时,继续填,直到超过设计标准20cm后,在进行压实工作,强制沉降回填料。此外,应当在施工情况允许下,尽量延长压重时间,避免通车后发生大幅度沉降,影响工程的后期施工。此外,在涵洞施工过程中还需要做好沉降缝的设置。在具体施工过程中,要依据相关的设计要求,在箱涵涵身中,每隔约9m设施变形缝,但凡是地基填挖交接以及地基土质出现变化时,都需要设置相应的变形缝,一般情况下,变形缝的宽度应当控制在2~3cm。在变形缝内侧镶嵌经受油浸的软木板,厚度通常为2cm,在外层填塞止水密封膏。在具体施工过程中,为了确保整个变形缝不仅呈竖直情况,而且都处于同一平面上,因此立模堵头出必须坚固、稳定,沉降缝的布置见图2。
4、隧道施工技术
结合赤水至望谟高速公路黔西至织金段项目的具体施工情况,对隧道施工技术进行总结,具体内容如下。
明洞施工
在具体施工前,需要做好测绘放样工作,要控制好基槽挖掘力度。在洞挖处,在具体施工过程中可以应用敞口放坡法。对于承载力基底物探工作开展中,对基底的探测可以通过地质雷达进行,同时在对地基进行承载力实验过程中可以利用重型动力触探仪完成[4]。在确定基地承载力能够满足具体的设计要求后,要及时完成仰拱混凝土的浇筑工作,从而确保整个工程的质量能够满足标准,延长工程的施工寿命。
钢支撑技术
在隧道施工过程中,要对工程施工中存在的断面情况进行认真检测。检测挖掘平面的具体情况,如果在具体施工过程中出现了挖掘力度未达到施工标准或过度挖掘的情况,需要对挖掘平面进行再一次处理,从而确保证挖掘面的质量能够得到标准。通过检测在确定挖掘面符合要求后,要尽早完成混凝土的喷射工作,与此同时还需要对钢架的方位进行明确,为日后施工的开展提供强有力的数据支持,促进我国公路隧道工程行业的发展。
5、结语
公路涵洞及隧道工程施工中,应用良好的施工技术对于确保工程的整体质量有着重要意义。因此,在具体施工中不仅要掌握国家对于工程的规范和具体要求,而且还需要在工程实践中不断的对工程施工中涉及到的经验进行积累,从而不断使工程的质量能够得到提高。与此同时,在工程施工的各个环节,需要施工人员的共同努力,从而使公路涵洞及隧道工程的质量能够得到提升,实现社会效益和经济效益的双赢。
市政隧道论文范文高中 第14篇
由于地层地质的复杂性,大跨软岩隧道工程仍然面临着以下几个急需解决的关键问题:
1)对围岩变形的判断与控制。对于软岩隧道围岩变形的研究主要集中在三个方面:
a.从理论方面对变形机理进行研究;
b.选择合理的施工工法对围岩变形进行控制;
c.运用有限元或其他数值模拟的手段对围岩的变形量和变形趋势进行预测。从众多的学术论文和科研成果中不难发现,对于围岩变形的机理多是采用连续性介质理论进行分析,而实际工程中的围岩是非连续的,它是岩块和结构面在三维空间的一种非定向关系。尤其是对于地质状况比较复杂的软弱围岩,都是由多种物理成分组成的,且各物理成分的大小、多少及分布具有很大的随机性。但是,在实际的研究和应用中,例如采用数值模拟的方法对软岩隧道围岩变形进行分析时,又必须运用岩体的本构关系,这本身就是存在问题的,更不要说计算结果的准确性了。不论是理论分析还是数值模拟都没有办法对围岩的变形量进行准确的判断。这将引起另外一个问题,就是在采取控制变形措施时,通常采用的是依据相似工程经验制定施工方案,并没有针对不同的变形量采取相应的控制措施,因此变形控制措施也具有一定的盲目性。另外,隧道施工中变形可以达到1.0m甚至更大,软弱围岩变形本质上属于大变形问题,然而岩体力学中使用的弹塑性变形理论虽然对材料的非线性进行了考虑,但是严格意义上仍属小变形理论。
2)对合理支护时机的探讨。隧道二次衬砌施作时机始终是隧道界讨论的热点问题,二次衬砌的支护时机是保证二次衬砌长期稳定的关键。特别是对于软岩大变形隧道,如果二次衬砌施作过晚,则可能造成初期支护变形过大而无法控制,以致隧道失稳;但如果施作过早,则不利于地应力的释放和充分发挥围岩的自稳能力,从而使二衬受力过大而导致开裂,降低了隧道结构稳定性。因此,合理确定二次衬砌施作时机是保证隧道施工阶段和长期运营阶段安全性的关键。但是现阶段,对于隧道二次衬砌支护时机的研究仍然没有形成系统的体系。研究者多根据具体的工程背景选择不同的岩石弹塑性模型,采用的确定合理支护时机的判定方法也各有不同。对于二衬支护时机的影响因素的分析也多是针对单一影响因素,并没有综合考虑。
2大跨软岩隧道的发展与展望
为了满足交通建设的需要,将不可避免的遇到更多的软岩隧道工程。围岩大变形的控制问题仍然是未来软岩隧道工程需要解决的关键问题。从根本上讲要更深入的研究围岩的变形机理,找出适用于实际工程地质状况的围岩的本构关系。在施工的过程中,超前地质预报要贯穿整个隧道的开挖过程,监控测量要及时跟进。对于具有代表性的工程要完善施工工法,以便以后类似工程经验借鉴。隧道是地层围岩和支护结构共同组成的复杂受力体。支护是一个过程,一个好的支护方案要让这一过程与围岩变形过程相协调。考虑到软弱围岩的蠕变特性,围岩的自稳能力是与施加相关的,因此二次衬砌的支护需要一个合理的时机。反过来理解,如果要确定合理的二衬支护时机,首先要对围岩的蠕变特性和变形机理进行充分而深入地分析,只有在此基础上,才能选择适当的支护时机和支护形式以及确定合适的支护参数。由于目前的研究多针对二次衬砌的支护时机探讨,应该将整个支护过程统一起来,形成与不同围岩级别、不同断面尺寸、不同开挖方式、不同支护参数相对应的系统的支护方案,以及更完善的施工工法。
3结语
市政隧道论文范文高中 第15篇
在当下我国的公路隧道工程建设质量管理当中,没有形成一个完整的体系,无论从管理还是监管立法等方面来看,都存在诸多的不足,而导致其原因形成的关键就是公路隧道工程建设没有经历过太长的发展历程,建设周期较短,从而导致在发展过程当中,处于一个积极探索的阶段。但是,公路隧道工程建设在质量风险能力控制上面,处于一个探索发展阶段,通过出现的问题进行分析,然后总结经验教训和不足,但是其中行业内潜在的一些问题还没能够得到有效的解决。这样便会导致在综合管理的发展之上,我国的公路隧道工程建设质量管理工作仍然存在一些不足的地方。
1.2公路隧道工程建设发展水平欠缺
在我国的公路隧道工程建设发展当中,由于发展方向不均衡,从而导致在发展过程当中,发展水平参差不齐。而且往往在工程建设单位都存在一个普遍现象就是过分注重工程本身,而忽略了质量管理的重要性。轻管理,重建设,是导致公路隧道工程在建设发展当中,一直被行业制约的关键。这样,长时间发展下去,公路隧道工程建设质量管理能力便得不到有效的提升。而没有明确的监管部门,职责模糊化,也导致在对于公路隧道工程建设当中,质量控制能力有名无实,没有一个健全完整的系统来加强管理和监测,没有一套完整的质量检测体系来应用,没有强制力保障的环境下,加强公路隧道工程建设质量管理工作的开展无异于空中楼阁。
市政隧道论文范文高中 第16篇
新奥法的思想和基本理论形成于上世纪的60年代,是奥地利学者在长期的隧道工程实践过程中,在岩土开挖理论的一个系统总结的基础上提出来的。新奥法的核心是将围岩不仅视为荷载,也是结构的一部分,最大限度地利用和发挥围岩的自承能力。利用这一基本思想,根据地层条件,在隧道的设计施工中最大程度地利用围岩的自稳能力,合理确定支护的时机,使支护的代价最低。新奥法的基本思路有以下几点:
1)因为围岩要参与整个结构的承载,应尽量减少对围岩的扰动,充分保护岩体。
2)为充分发挥围岩承载能力,应允许并控制岩体的变形。施工中应采用能与围岩密贴、及时筑砌又能随时加强的柔性支护结构,就能通过调整支护结构来控制岩体的变形。
3)开口不利于结构形成整体的受力结构,为此,在施工过程中应使衬砌尽早封闭成整环。
4)利用信息化施工技术,合理布置监测点,及时掌握围岩及支护结构的应力和变形,通过监测信息的反馈及时调整支护参数。
5)多采用喷锚式初衬外加现浇混凝土二衬的复合式衬砌结构。二次衬砌等初衬施工完成、围岩基本稳定之后再施作。二次衬砌可以用来承担围岩流变等引起的后续荷载。基于上述描述,新奥法的精髓可以概括为十二字方针,即“少扰动、早喷锚、勤量测、快封闭”。新奥法自创立以来,在我国的诸多软弱破碎围岩中也得到了广泛而成功的应用,目前已经发展为山岭隧道及地下工程施工的一种重要方法。金鸡岭隧道所处地层围岩稳定性差,故采用新奥法修建,在修建过程中克服多种施工中的难题,取得了较大的成功。本文将对该隧道的施工技术进行系统地分析。
2工程概况
金鸡岭隧道位于鄂州市新庙镇月陂村,为双向四车道,非独立式双连拱隧道。隧道穿越的山体的最高海拔约为,隧道最大埋深约为。隧道起讫桩号为K37+870~K38+215,全长345m。进口隧道设计标高为左洞,右洞;出口隧道设计标高分别为左洞,右洞。隧道进口、出口采用端墙式洞门。隧道地段进出口及浅埋地段上覆岩体比较薄,风化相对更强烈,围岩变形模量较小、稳定性较差。隧道地段以层次多、结构较松散的软质、较软质岩石为多,有软弱的炭质层存在,岩石强度及稳定性较差,洞壁开挖容易产生较大不良变形,产生掉块、坍塌。
3施工技术方案
根据隧道的长度、现场地质条件及工期要求等因素,本隧道采用从进口单口掘进的施工方案。
洞口施工
洞口工程主要施工流程如图1所示。因洞口围岩风化强烈、稳定性差,为保证其稳定性,在洞门表土开挖施工过程中,利用挖掘机而采用不爆破或弱爆破方式挖掘洞门土石方。为增加洞口稳定性及安全,采用强支护处理。在洞口边坡及影响范围内的仰坡上打设锚杆,为增强围岩的整体性和锚杆支护效果,锚杆打入方向应垂直于岩面。锚杆打入深度为4m。同时布置25cm×25cm的钢筋挂网,钢筋直径,在钢筋挂网上喷射混凝土,形成锚喷支护。
超前管棚注浆施工
为防止岩层坍塌和地表下沉,保证掘进和后续支护工艺安全,本工程洞口设置有22m长超前管棚作为临时超前支护。管棚采用φ127×的钢管,钢管长24m,管棚与4榀I20b做成的拱架连接在一起,并用C25混凝土浇注,形成一个模拟的洞门,在临时洞门的防护下进行洞身开挖。长管棚内注浆采用水泥单液浆。水泥浆水灰比∶1,注浆初压~,终压。
隧道段开挖
根据不同的地质断面,选择不同的开挖和支护方式。V类和Ⅳ类围岩地段采用三导洞超短台阶式开挖,施工时采用预裂爆破,上下台阶分开,采用短进尺,弱爆破。对于Ⅲ类围岩洞身开挖,采用全断面开挖,施工时采用光面爆破,循环进尺。中导洞的断面形式为圆顶直墙,整个断面全部开挖。采用光面爆破进行全断面开挖,爆破前用凿岩机钻眼掏槽。中导坑开挖完毕之后,对整个中导坑底板进行标高复核,用低标号砂浆铺底平整,然后进行底部锚杆施工。钢筋安装好后,分为基础及墙身两部分混凝土浇筑;基础采用普通拼装模板,墙身采用8m长模衬台车、滑模施工工艺进行施工。左右导洞采用全断面法开挖,左右正洞采用上下台阶法开挖,进洞口、出洞口8m范围内掘进进尺为~,其余位置掘进进尺为1m(Ⅴ级围岩)或2m(Ⅳ级围岩)。
初期支护
岩体开挖后须及时进行支护,以维持围岩稳定,保障后续施工有安全的工作空间。金鸡岭隧道施工中,采用中空注浆锚杆、砂浆锚杆、钢拱架、钢筋网、喷锚支护紧跟开挖面及时施作,以减少围岩暴露时间,抑制围岩变形,防止围岩在短期内松弛。各区段采用的初期支护参数如表3所示。
砂浆锚杆
本工程选用20MnSiφ22砂浆锚杆,利用自制凿岩台架,风动凿岩机钻孔,孔深、孔位、外插角偏差应符合设计和规范要求。锚杆采用φ25钢筋按设计长度加工而成,按不同围岩的设计间距梅花形布置。砂浆锚杆的砂浆应拌制均匀并防止石块或其它杂物混入,随拌随用,初凝前必须用完毕。
中空注浆锚杆
1)施工方法在隧洞的顶部采用中空注浆锚杆,型号采用D25型。首先需要使用风枪进行钻孔,然后使用注浆泵完成注浆工艺。2)注浆施工要点注浆压力控制是注浆施工关键,根据工程经验可取为地下水压的2~3倍。另外,还需根据围岩自身的裂隙阻力进行调整,最大压力值理论上不宜大于。而注浆的范围一般根据经验类比法或者现场注浆试验来进行确定,注浆量一般通过注浆压力达到来进行控制,单孔注浆量一般不超过1t。
钢拱架支护
1)设置方法
钢拱架先在洞外分段加工,在端部设置法兰。安设前由运输车运至洞内,用人工进行螺栓连接和拼装。拼装完成之后,挂网喷浆。
2)施工要点
首先,在钢拱架架设之前应认真检查钢拱架的加工质量;在架设时,先清除底脚浮渣;如果遇到超挖的情况,尚应加设垫块,而中间部位的接头板应用砂或土体埋住,防止喷射混凝土堵住接头板上已经打好的螺栓孔。然后,按照设计要求,焊接系筋和纵筋,段与段之间设置垫片并确保螺栓被拧紧,以保证钢架的受力性能。同时要校核拱架中线的标高和尺寸。而拱架和围岩面之间尚需安设鞍形的垫块,使钢拱架与岩面之间贴实、压紧。
钢筋网
按设计要求加工钢筋网,随受喷面起伏铺设,同定位锚杆焊接或绑扎固定牢固,钢筋网与受喷面的间隙以3cm左右为宜,混凝土保护层大于2cm。
喷射混凝土
按设计要求的厚度在挂网上喷射混凝土,为保证施工质量,喷混凝土应当分段、分块。施工顺序上先喷墙、后喷拱顶,从下往上喷。为保证喷射混凝土的密实度,混凝土喷嘴应做直径为20cm~30cm的螺旋路径移动,反复缓慢地进行喷射。控制水压、压缩空气的风压,掌握好喷射距离,避免过多的回弹。如果设计厚度大于5cm,应分两层进行喷射,第二层需在第一层终凝一个小时之后进行,同时有必要对第一层的混凝土面层进行冲洗。
二次衬砌
二衬的施工一般要等围岩变形稳定之后才能进行,而围岩稳定的判断要依据监测数据进行分析,等变形数据趋于收敛时方可。在本隧道的施工中,衬砌距离开挖面约为30m~40m之间,一方面能使各工序在空间上互不冲突,同时能保证围岩在开挖后无支护暴露的时间控制在合理的范围之内。隧道边墙及拱部二次衬砌的浇筑采用移动式液压模板台车和泵送混凝土整体浇筑,以保证二次衬砌的密实,超挖部分采用同级混凝土回填。每模衬砌混凝土连续浇筑,一次完成。二次衬砌施作时先浇筑仰拱和矮边墙,再立模进行拱部混凝土浇筑。
施工监测
现场施工监测和监测数据的及时分析和反馈是及时了解围岩状况和隧道安全状况的基本手段,也是现代隧道施工的重要部分,是新奥法的核心之一。根据围岩情况,合理地选择监测断面、布置监测元件,合理频率的动态监测,实时分析监测数据,判断围岩状况,分析初衬和二衬是否达到隧道设计要求,并及时地反馈,从而使工程设计人员和施工人员能够及时调整设计和施工方案。
4结论
市政隧道论文范文高中 第17篇
关键词:地铁隧道水平冻结冻结壁地表变形数值模拟
冻结法由于具有高强、阻水、均匀、灵活、经济等特点,在日本及欧洲各国的城市地铁等市政工程中都有广泛应用。我国在北京、上海地铁施工中也采用过局部冻结技术,但地铁隧道的水平冻结施工在我国还没有先例。北京地铁大北窑车站区间隧道施工首次成功地采用了水平冻结技术,水平冻结长度40余米。工程地处交通枢纽,交通繁忙、建筑众多,隧道上覆多条地下市政管线。冻结施工伴有冻胀和融降现象,过量的冻胀量和融降量将使地下管线及地上的建筑物、道路等受到影响甚至破坏,因此,研究和预测城市地铁隧道水平冻结对地下管线、地表变形的影响规律十分必要。
1工程简介
北京地铁大北窑区间隧道局部水平冻结施工工程距大北窑车站东侧40m,位于建外大街与东三环的交叉处,有多条地下管线,隧道顶部有2m厚的粉细砂层,由于多条管线渗漏,致使粉细砂土饱和。隧道暗挖施工时出现流砂坍塌,为保障地面立交桥的安全畅通,隔断门向西40m隧道采用局部水平冻结法施工。地质情况为:0~-115m为杂填土层,-115~-1015m为轻亚粘土层,-1015~-1215m为粉细砂层,-1215~-1815m为圆砾石层,隧道底部-1815~-2215m为轻亚粘土层。
2FLAC软件及模型的建立
FLAC软件即连续介质快速拉格朗日分析软件,是目前世界上最优秀的岩土力学数值计算软件之一,在模拟支护体方面可提供梁、桩、锚杆、壳体等多种结构单元,非常适合于研究隧道开挖等岩土工程问题。
211施工隧道的数值分析模型
选取冻结法施工隧道的横断面作为开挖模拟的力学几何模型,以现场原型工程为研究对象。考虑问题的对称性,取一半建立模型,待开挖的隧道断面取半径为3m的圆形,上覆盖土层厚12m,隧道底板土层厚度分别取10m和23m,满足大于隧道开挖影响范围3~5倍的要求。力学模型尺寸为23m×28m,按平面应变问题求解,模型底部边界采用固定X、Y方向位移约束,左、右边界都采用固定X方向的位移约束条件。由于原型工程属于浅埋隧道,座落在其上方的东三环立交桥的桩基持力层在隧道底板埋深水平以下,故地表上方不需加载。212隧道分步开挖模型选取工程现场隧道纵断面作为隧道开挖模拟的力学几何模型,隧道纵向长40m,断面高112m,开挖步距2m,上覆土层厚12m,隧道底部范围土层深10m,平面40m×28m,网格划分为1120单元,按平面应变问题求解,模型底部边界采用固定X、Y方向位移约束,左右边界采用固定X方向约束。213模型的有关参数本模型采用摩尔—库仑准则参考有关资料确定模型材料参数如表1。
3隧道开挖过程数值计算结果处理
在修正模型中输入土体初始参数后,计算分析主应力、塑性区发展状况及拱顶和隧道上方地表的垂直位移过程,得到如下结论:
(1)作为施工隧道开挖中承受上覆地压的主要载体冻结壁的拱脚上出现应力集中,应力集中系数可达3~4之多。
(2)冻结壁拱脚冻土体可能会出现塑性屈服区,这正是现场隧道收敛测试中出现的两拱脚之间距离先减小后增大现象的根本原因。
(3)在隧道开挖造成土层损失引起地表下沉的过程中,由于抗压、抗弯强度等力学指标比周围土体大得多的冻结壁减缓了隧道中线及附近的地表下沉,从而减少了地表下沉量。
根据PECK原理作出如下地层地表沉降预测:
S=Smax·exp
2i2式中Smax地表最大沉降量;
i沉降槽宽度系数;
x距隧道中心线距离。
取i=0141H(H为开挖深度),绘出按PECK公式计算的地面沉降曲线(见图1)。
图1地表沉降曲线图
比较表明,由模拟得到的地面沉降曲线与PECK公式的曲线相一致。从图1可知,隧道开挖后形成的地表沉降槽在垂直隧道轴线方向上的影响范围为隧道外侧约215倍洞径。将沉降槽近似看成三角形,沉降槽的平均倾斜率ΔT=SmaxΠW=0100075(W为沉降槽的半宽)。根据《建筑地基基础设计规范》(GBJ7—89)的规定,对于高度<60m的多高层建筑,基础的允许倾斜率≤01003,所以隧道水平冻结施工引起的正常地面沉降不会使地面建筑和混凝土路面遭到破坏。
改变冻结壁厚度(018m、112m、115m、118m)得到地表沉降与冻结壁关系曲线见图2。
图2地表沉降与冻结壁厚度的关系
从以上图形可得出如下结论:
(1)冻结壁的厚度参数是隧道水平冻结施工中的一个重要参数,冻结壁对控制地表沉降的作用很明显。地表沉降在冻结壁厚度S=112m时为12mm,S=018m时为16mm(增加60%),S=115m时为10mm(减少了20%)。
(2)对于原型工程,其他条件(开挖步距、台阶工作面长度及掘砌工艺等)不变时,冻结壁厚度可降为018m,此时地表沉降量为16mm,满足北京地铁施工地表沉降量最大允许值30mm的要求,取一倍安全系数,得到合理的冻结壁厚度为115m。
4隧道开挖施工动态数值模拟
采用虚拟支撑力法来模拟开挖断面的空间效应。在正台阶工作面长度为4m、开挖步距2m以及其他条件都与现场相同的情况下,在模拟程序中设置隧道的顺次开挖拱顶及地表监测点,拱顶处从点(i=4,j=17)开始,每隔2m设置一个测点,直至(i=12,j=17),前后共设5个测点;隧道中线垂直上方地表从点(i=1,j=29)开始,每隔2m设置一个测点,直至(i=33,j=29),前后共设17个测点。分析隧道中线垂直上方地表各点、拱顶各监测点的沉降数据得到如下结论:
(1)当掌子面开挖到与测点距离相差110~115倍洞径时,隧道开挖就对地表产生影响,造成一定范围的沉降。
(2)当开挖工作面推进到距离超过测点2~3倍洞径时,变形速率逐渐稳定下来,主要是地层的变形逐渐趋于平缓。
在开挖第5步时,改变开挖步距(L0=2m、3m、4m),得到拱顶测点(i=1,j=17)的位移沉降历史图(图3)。分析表明,在开挖步距L0=4m的情况下,检测点
注:菱形点、方点及三角点分别代表开挖步距为2、3、4m。
(i=1,j=17)地表下沉量约为L0=1m的117倍。在现有施工能力及组织水平的基础上,根据图示的数据比较,考虑选择开挖步距L0=3m是较为合理的。在开挖第5步时,改变台阶工作面长度(L=2m、3m、6m),得到地表测点(i=1,j=43)的沉降历史图(图4)。
注:菱形点、方点及三角点分别代表开挖步距为2、3、4m。分析表明,适当降低台阶工作面长度对地表沉陷及拱顶下沉量的影响不大,但增大台阶工作面长度却能明显地减少地表的沉陷值及隧道的收敛变形值。在北京复—八线采用水平冻结法施工时,台阶工作面的合理优化长度L=5m。
5结论
(1)通过基于原型工程的数值模拟可得到隧道水平冻结法开挖施工中应力场、位移场分布特征。
(2)通过数值计算得到的考虑地表沉降情况下的合理冻结壁厚度为115m。
市政隧道论文范文高中 第18篇
隧道施工安全管理必然要根据具体的安全管理制度及措施进行,现在许多施工单位虽然有相应的安全管理制度,但是在责任落实方面显得苍白。安全事故发生以后无法找到最终责任人,无法落实相应的责任归属。这种情况下,就给安全管理人员消极应对、逃避责任留下余地。而且现在许多施工单位的安全管理人员并不是企业的全职员工,他们往往采用兼职的方式进行安全管理,安全管理人员的薪资待遇、福利保障等也常常落后于企业其他员工,从而对安全管理人员的工作热情造成严重打击。这种打击一方面让他们不愿意积极的发挥专业知识,促进安全管理水平提升;另一方面,由于他们多为兼职人员,在权力与责任方面没有进行严格划分,从而当出现安全事故苗头的时候,他们不敢也没有权利主动采取应对措施,而就在他们轻视部门领导和项目经理的时候,安全隐患可能就已经演变成了实实在在的安全事故。这样的安全管理人员以及安全管理制度形同虚设,毫无作用可言。
隧道施工作业由于安全管理难度大、工作复杂,所以更应该重视对施工人员、管理人员、项目责任人等的安全教育,但是目前对于许多施工单位来说,他们把过多的精力用于争取新项目、争取施工进度等,而忽略了安全管理这个重要问题。而且在安全管理人员这个岗位的安排上也存在严重的认识偏差,他们由于不重视安全生产管理,所以也将安全管理工作作为了一种变相的福利待遇,所以许多施工企业的安全人员除了雇佣兼职人员之外,多数时候都安排给了企业自己内部的老员工。虽然老员工从事了多年的施工作业,具有丰富的实践经验,但是毕竟不是专业安全管理人员出身,不具备专业的安全管理理论知识和专业技能以及不具备新思维、新观念,从而阻碍了安全管理水平的进一步提升。而且对于现有的安全管理人员,施工企业也不重视对其的安全知识教育和培训工作,再加上安全管理措施简陋、设备缺乏,从而安全事故频发便不足为奇了。
虽然安全管理奖惩制度几乎已经在所有的隧道施工建设单位当中确立起来,但是在具体执行过程中却存在非常严重的执行不力问题。执行不力表现在很多方面。首先是安全事故出现以后,企业领导者与管理者往往将主要精力集中于如何安抚家属、符合应对社会舆论,而在责任人的追求上面十分不力,项目责任人、安全管理人员在事故发生之后所受到的责任追究往往较轻甚至没有什么实质性的惩罚。这就让相关责任人从心理上认为就算不负责任、相互推诿、麻痹大意也没什么大不了的,从而对待安全管理工作的态度也就不可能认真起来。这样不仅会给企业造成严重的声誉损伤,而且也是对企业员工及国家和人民的一种极不负责任的态度。一方面出了问题不会受到处罚,另一方面做出了成绩也得不到应有的奖励,这种风气的出现,让那些原本愿意尽职尽责的安全管理人员也从心理上产生了极度的不平衡感,觉得自己努力工作、加强管理也得不到应有的收入,便逐渐产生了一种敷衍了事、得过且过的不负责任的态度。
加强安全生产管理意识不光是喊喊口号,而是要从具体施工程序上进行安全操作意识树立。首先在隧道施工过程中必须加强施工前情况分析明确、施工前预先加固、尽量减少爆破次数、尽量减少阶段性挖掘长度、加强支护架设、提高数据测量频率等等。在每一个环节都认真落实安全生产的规范操作才能在工作中切实树立起安全意识。其次是要加强管理人员执勤工作力度,要建立专门的安全管理值班计划并严格进行值班人员值班情况记录,严格值班人员交接手续执行。在施工过程中如果遇到需要进行爆破的情况,必须严格按照国家有关规定办理,并且做好爆炸物品的采购、管理、使用、回收等各个环节的记录工作。对于某些特殊地质条件的隧道施工,必须事先制定一个或者多个应急预案,力求万无一失。
安全管理责任落实必须从上到下、从中心到周围。首先就是加强对企业领导者和具体项目管理者的责任确定,这样才能起到良好的模范作用。只有上级严格按照标准和规定执行,下级人员才会愿意遵照执行,所谓“身正,不令而行”,所以上级人员的以身作则非常重要。在责任追究方面必须严格按照制度执行,不可以搞特殊化和避重就轻,否则会造成不良影响。最后是管理制度的各个环节都要紧密相扣,加强各个部门、人员的相互监督,这样才能确保安全管理责任制度的有效落实,让安全管理无论何时都实现透明化、可控化的状态。
市政隧道论文范文高中 第19篇
外部条件
公路隧道多为缩短距离或者避免大坡度越岭而设,施工工地一般位于深山峡谷中。海拔高、地形差,电力、通讯网络不发达,施工外部条件保障难。
现场环境
隧道工程埋于地下,洞内通风、供氧困难,施工环境差。山岭隧道埋深大,工程地质、水文勘察困难,准确度低。施工完成后返工成本大,质量要求高。
施工工艺
山岭隧道多采用新奥法施工,通过控制爆破来保持围岩强度,薄层支护手段来控制变形,以发挥围岩的自承载能力,并通过施工监控量测来指导隧道工程的设计和施工。
施工组织
隧道施工作业点少,作业面和施工通道窄;施工作业工序多,各工序循环衔接紧;作业人员工种多,机械设备种类多。施工组织的制约因素多,极易发生变动。
施工风险
工程地质、水文勘察不准确,造成施工作业的风险大。由于施工条件保障难和施工环境差,对施工人员、设备产生不良影响,更易导致出现各种意外风险事故。
2合同风险分析
要管理风险必须首先识别风险,对风险的严重程度及可能造成的影响进行估量。通过对青藏高原边缘的四川盆周地区公路隧道建设实践统计,主要出现以下几类合同争议或风险。
外部条件约定不明
青藏高原地区基础设施建设滞后,电力线路网络不发达。招标文件中对电力资源情况表述不明,投标单位现场踏勘不到位,未根据现场实际条件在招投标阶段明确约定施工用电接入的双方权责,或约定的接入方案未实现,造成实际施工成本偏差巨大,引起较大合同纠纷和索赔。
施工环境认识不足
青藏高原地区自身高海拔造成高寒气候,施工有效工期仅6~8个月,而合同工期仍按全天候施工进行约定。为完成工期目标必须增加冬季施工措施,而招标要求不明、投标措施和费用考虑不足。高寒、缺氧条件下,人员流动性大,机械设备效率低,为提供工人劳动保障,必须配备医疗、供氧等配套设备,施工成本较高。投标报价中对恶劣环境认识不足,以低价中标,在施工阶段机械设备、安全措施等投入不足。造成人员安全风险大,工程质量、工期严重不可控。
地质、水文勘察不准
地质、水文勘察的准确度不够,造成大量变更。对新奥法施工以监控量测指导动态设计和施工的原理认识不足,勘察设计单位为规避自身失误造成的影响,建设管理单位为控制投资,也会倾向于少变更,直接影响着工程安全、进度和投资控制。
合同工期不可控
电力保障不到位、冬季施工措施不足、地质和水文变化大、人员和机械设备效率低等均会造成施工工序循环的不连续,施工组织计划不能得到顺畅执行。高原隧道施工要求高、成本大,任何合同争议都可能成为压垮施工作业队的'最后一根稻草,甚至导致整个项目陷入停滞。
3合同管理策划
风险分配
风险分配是合同管理策划的重要组成部分,通过招标、投标和合同谈判活动进行风险分配,最终以承发包合同形式进行约定。合同不仅应对风险有全面的预测和定义,还应全面地落实风险责任,在合同双方之间公平合理的分配风险,以利于控制风险。如果业主因自身控制风险能力较弱或不愿意承担风险,而将大部分风险简单地转嫁给承包方,将会导致施工报价风险费用增加,或风险费不足时因资金和效益问题影响正常施工,或偷工减料影响质量,甚至不惜毁约终止合同而停工。
合同策划
业主的合同策划应在招标文件中充分考虑各项风险因素及尽可能对风险损失作出准确判断,并进行公平合理化的分配。承包方在投标文件中对招标文件进行响应,并提出应对措施和相应报价。一般遵从以下几项风险分配原则,进行具体的合同策划。⑴如果一方能够更好地预见和控制某项风险,则风险由该方承担。目前公路建设多采用施工承发包的模式,即由业主先委托单位完成勘察设计工作,然后公开招标确定施工承包单位。业主通过勘察设计单位能够对工程地质和水文进行更充分和有效的勘察,而且地质风险对成本控制影响较大,则该类承发包模式下地质风险应由业主承担。当工程地质或水文发生变化造成设计变更,业主应承担施工单位的费用和工期补偿。而对勘察设计工作不足造成的损失,业主可追溯勘察设计单位相关责任。⑵如果某风险发生后,一方为直接受害者,则该风险划分给该方。为施工作业人员提供劳动保护,必须配置相应的医疗和供氧设施。以上投入不足或措施不到位,将影响工程安全、质量和进度,此类风险由承包方承担,业主提供必要经费并在招标文件中提出明确要求。⑶一方应为其自身恶意或渎职引起的风险负责。未按规范或设计图纸进行施工,造成质量缺陷,施工单位无条件承担返工责任;由于施工方法或操作不当引起的事故或损失,如爆破、机械事故等应由施工单位承担。对此类不规范行为造成的损失,应由责任方承担,或对其增加处罚。⑷如果一方是管理某项风险所获得利益最大受益者,则该风险由该方承担。新奥法施工中超前地质预报和监控量测工作至关重要,及时获取准确、可靠数据指导动态设计和施工,能加快施工进度和确保施工安全。该项工作与施工衔接紧密,可以约定由施工单位承担。由于此项工作对投资控制影响较大,也可由业主和施工单位共同委托独立第三方提供超前预报和监控量测专项服务,但合同中应明确相关费用和三方各自责任。⑸一方如能很方便地对风险进行投保,并能将保险费消化在其费用中,则最好由该方承担。业主可约定保险费率或额度,并提供专项资金,通过施工单位投保建筑工程一切险和第三方责任险等来转嫁相应风险。
4合同争议解决
若在施工过程中因上述合同策划中未考虑到的因素造成合同争议,应优先以上述风险分配原则进行协商解决。若协商无果可以向仲裁机构申请仲裁,如无法仲裁,最终可以向法院提起诉讼。
5结语
随着青藏高原地区公路建设项目的不断增加,隧道工程的合同管理实践不断丰富,对该地区隧道建设所遇到的合同争议有了更充分的认识,合同管理也从施工过程中的合同控制和合同纠纷处理扩展至合同前期策划,全过程的合同管理将更利于建设投资、安全、质量、进度控制。
市政隧道论文范文高中 第20篇
目前,国内许多工程施工还处于粗放的管理状态。施工生产操作较为松散,施工材料计划编制粗糙,现场浪费极大;施工工艺落后,管控力度小,工期拖延、质量下滑等现象较多,极大地影响了企业效益和信誉。精益建造是以生产转换理论、生产流程理论和价值理论为理论基础,以精益思想原则为指导,对工程项目实施过程进行重新设计,在保证工程质量、施工安全、工期短、消耗少的条件下建造用户满意的建筑产品为目标的新型工程建设项目管理模式。常熟发电有限公司扩建工程F标段是我国发电厂工程中首座深水引水隧道工程。引水隧道工程位于长江下游徐六泾河交汇处南段,由循环水泵房、取水隧洞和取水立管组成,引水隧道最深处离长江水面26m。盾构机在施工时要穿越长江大堤和多个富含沼气、上软下硬的地层、流沙土等地质复杂地段。施工技术难度之大,工程管理风险之高,在我国水下引水隧道施工中极为罕见。项目部运用精益建造方法,对该扩建工程进行创新性的管理,确保在2014年1月底全面投产后,大大缓解江苏、上海地区电网供电紧张状况。此外,可以为同类工程创造项目管理经验,促进中铁十四局工程项目管理水平的提高。
2施工难点分析
循环水泵房施工难点
一是沉井结构体积大、下沉重量万t,制作及下沉施工控制难度大。二是地质条件极为复杂,所处地层土质为素填土、充填土、粉质黏土、淤泥质粉土、粉砂夹粉土,而且地下水位高,多为液化层,易产生流砂现象。沉井在这样的软土地基中预制下沉,沉井底可能会出现突涌等风险,下沉速度控制和纠偏难度大,同时如果沉井下沉过程中发生倾斜,很容易挤断钻孔桩。
取水隧道施工难点
一是地质条件复杂、施工难度大。取水隧道经过了厂区陆域、长江大堤、潮间带浅滩、深水岸坡等多种场地类型;施工穿越2层粉砂加粉土、1层淤泥质粉质粘土、1层粉质粘土夹粉砂,易发生流砂和管涌等不良地质现象,而且土层含有沼气等有害气体。二是水利部门要求盾构穿越大堤时,大堤的允许沉降量必须满足二级堤防沉降要求,控制要求高。三是隧道埋深浅,水压大。穿越流沙土层,最大渗透系数达×10-4cm/s,且地下水与长江水形成补给关系。四是每条隧道长,盾构长距离推进给网格式盾构盾尾防渗漏、出土泥浆输送、水平运输均带来较大的不确定性。五是垂直顶升和取水头安装等水上作业施工精度控制较困难,风险因素多。
3施工过程的精益化管理措施
结合本项目的特点,围绕本工程不同施工阶段的管理目标,在编制施工组织设计过程中,融入精益建造的管理思想,形成运用精益建造方法的实施工作计划,使精益建造方法和应用领域的实施建立在切实可行的基础上。
精益化的进度管理
采用准时化施工管理技术进行工程进度管理。以业主方“中电投”对总工期的需求为依据,精准地组织每个施工环节。一方面,在编制进度计划和实施过程中,缩短各工序、各分项工程转换时间,尽量使各分项工程之间的转换时间接近于零。确保在任何一个分部、分项工程或工序结束,立即转入下一道工序,实现施工工序转换的间隔时间趋近最小的状态。在具体操作时,主要做好施工现场作业人员、施工机械和建筑材料三个方面的工序转换。另一方面,严格要求各专业分包单位在必要的时间完成必要的工作量。按照供应链管理原理与建筑材料供应商建立良好的合作关系,要求供应商按工程进度计划需要的数量准时地把材料送到施工现场。项目财务部门准时地划拨资金。在施工过程中,每一道工序都按照后工序所需工程量向前工序提出人员、材料、施工机械等的要求,从而为每道工序在既定的时间内完成计划的工作量奠定前提条件。
精益化的质量管理
在施工阶段,采用“末位计划技术”编制质量控制计划,通过逆向拉式流程把质量计划控制在准确的范围内,也使得现场操作工人能够主动地关注与其相关的全流程的质量控制,并通过“看板管理”等方式清楚地知道质量控制的标准和达到要求应采取的措施,从而把质量损失控制在最小的程度。
(1)结合沉井下沉、江底取水隧道等工程具有长江边软基施工技术难度大、地质复杂、季节性强的特点
项目部严格执行重大技术方案国内知名专家评审制度,确保技术方案可行、有效。
(2)坚持盾构施工质量综合评估制度
分析出现问题的原因,采取措施,使问题及时得到整改,指导下一步的施工,保证了施工质量。
(3)对采购进场的建筑材料、构配件、半成品由项目质量总监组织工程、质量、技术、物资部门的责任人员进行验收
在监理工程师的现场见证下,由试验人员进行取样送检,对经试验达不到标准的材料,坚决清退出场。各种建筑材料、半成品等进场后分门别类堆码存放,标识检验和试验状态防止误用,并实现可追溯性。
(4)项目部建立了工区、项目部两级的测量跟班作业制度。
为保证沉井下沉和江底取水隧道盾构施工取得好的效果,项目在现场设置了两个高标准的永久测量控制点。在沉井下沉过程中,分组24小时跟班作业,每小时观测一次,对沉井下沉进行数据指导,从而保证了沉井下沉质量。在盾构取水隧道施工中,在沉井顶部设立固定观测墩,保证了下井控制点的精度。
精益化的成本管理
项目建设过程中涉及的材料种类繁多,数量庞大,且对于不同材料的使用时间一般都不同,呈现较明显的阶段性和技术关联性,如管片生产的结束必须在隧道主体工程开工之前。因此,材料供应的准时化是实现材料成本精益化管理的重要前提。第一步,编制材料使用计划。对项目所需消耗材料总量进行测算,按照施工进度计划将其分配在对应的进度期间。材料使用计划编制建立在类似项目施工历史经验数据和本项目较为详细的材料测算基础之上,在各种约束条件下,根据设计方案中材料的预算量,再结合工程项目的进度计划,制订一个粗略的材料使用计划。第二步,计算材料供应的订货时间。为实现材料供应的准时化,必须为每种材料设置供应的预订货时间。施工中使用的材料,有些可以在现场实时订货,供应商可以快速送达;有些材料则必须要提前订货,才能保证供应商的供货准时,如对各种异形钢管制定适宜的预订货时间是实现钢管准时供货的基本前提。第三步,确定最佳订货量。定货量的大小对于施工方和供应商都是成本控制的一个重要因素。订货少会出现停工待料现象,订货太多又会增加现场堆放困难和库存费用。因此,确定定货量时要考虑供应商能够提供的数量、订货费用、存货费用等因素。
精益化的安全文明施工管理
项目部坚持高起点、高标准、严要求,按照5S现场管理技术要求,规范现场物品和设施布置,使现场所有的生产要素均处于受控状态,在确保安全生产零事故、质量零缺陷、工期零滞后的同时,狠抓现场安全文明施工,着力打造现场文明施工亮点,保证了作业人员的人身安全和设施安全。具体做法如下:
(1)建立健全安全管理制度。
项目部实行专项责任制,使安全生产管理系统化、规范化。在施工中,坚持安全例会制度、建立安全管理措施先报批后执行制度、建立安全检查制度、建立工班“三上岗”和“三工制”制度,做到在安全生产上各项工作有章可循。积极落实“中央企业安全生产禁令”,采取全员学习、张贴宣传等方式,把“中央企业安全生产禁令”贯彻落实到施工全过程中。
(2)开展形式多样的安全教育活动。
聘请安全专家进行安全知识培训,把生硬、教条的安全教育说教,采用“亲人心语”等形式,让操作人员深刻体会到安全生产事故给他人、家人带来何等痛苦,变“要我安全”为“我要安全”。
(3)编制各种应急预案并进行演练,落实应急预案制度。
项目部编制了触电事故、防台防汛、高空坠落、机具伤害、坍塌事故、物体打击、消防、盾构逃生等应急预案,并对各种应急预案的实用性、可操作性进行演练,通过演练考验抢险队伍的应对安全生产事故的应急能力,检验项目部和工区的协作能力。
(4)制定严格的隧道洞内施工管理制度。
在盾构施工出入口处设置了值班岗亭,每天24小时有专人值班,严格做好进出隧道人员的登记,严格禁止酒后、身体不佳者进入隧道。进入洞内禁止吸烟,禁止带火种,禁止携带手机,禁止乱扔垃圾,一旦发现上述违章现象,对管理人员和作业人员严肃处理。
(5)组织进行重大危险源辨识活动。
为切实做到预防为主,将危险消除在萌芽状态,针对本工程的特点,项目部经常组织相关人员进行重大危险源辨识活动,确定重大危险源清单,并制作成标识牌,如沉井下沉过程中的防高空坠落、防漏电、防管涌等,使所有作业人员清晰知道施工区域的重大事故隐患和重大危险源,做好预防,确保施工安全。
(6)根据施工现场的需要设置了专门的警卫室和警卫人员,24小时值班站岗。
为加强现场乱抽烟现象,设置了专门的吸烟室和茶水房,以便施工作业人员临时休息。为防止火灾发生,在易发火灾区配备了专人负责的灭火器、沙箱等消防器材,并定期进行检查。
精益化的绿色施工管理
根据本项目专项工程施工特点,在施工组织设计中,针对绿色施工制订详细的方案。例如,钻孔灌注桩、沉井下沉和盾构掘进等施工过程中会产生大量泥浆,若处理不当将会对环境造成极大污染,为此,在施工现场西侧开挖了容量约万m3的泥浆池,做到“水入沟、泥入池”,最后统一排放至当地环保部门指定地点。严格执行生产垃圾与生活垃圾等废弃物分类存放,并按业主和当地环保部门要求进行处理。严格控制空调温度、电器开关位置、水龙头位置张贴提醒标志,强化所有参建员工的节约意识。现场施工道路全面硬化,定时洒水、压尘。在围墙一侧设明沟排水,排水沟上盖铁篦子,并设有沉淀池。在施工场地大门处设置洗车平台,所有驶出施工场地的车辆均需进行清洗,清洗后的污水经过沉淀池后回收利用,确保不会对道路及市政管道造成污染。所用加工地场均作隔音处理,如搭设防护、隔音棚等。需要在夜间进行施工的部位,严格选择符合要求的施工机械,若不能满足噪声控制,相应部位夜间停止施工。
精益化的技术创新管理
该工程在我国水下隧道建设中首次采用了“下插式”取水立管施工新技术,盾构机施工先后穿越长江大堤和多条富含沼气、上软下硬地层、流沙土等错综复杂的不良地质段。按照设计,在水下22~26m深处的隧道顶部安装取水口,液压振动锤最高要产生520t的冲击力,才能把重55t、直径、高27m的钢护筒打入土层中,与隧道拱顶开孔口对接。在长江潮水高达的浪击下,对接定位的控制相当艰难。取水立管处于长江中心的深水区,不仅水下压力大,而且要防止卵石、块片石、流砂等冲积物的影响,在这种条件下,确保对接的精确度无误是一项巨大挑战。项目部与业主、设计、监理单位密切协作,编制了“正头保尾、无损漏偏、规范操作、稳步推进”的施工作业方案,采用应力传感器等国内先进的监测设备,实时监控隧道结构受力变形情况,成功实现了取水管与隧道拱顶精确、安全对接,取水立管与取水隧道拱顶的对接精度误差控制在2cm之内,还创造性地在隧道顶部沿钢护筒四周打入66根冻结管,利用冷冻技术封堵止水,并在隧道内加装40m钢内衬,保证了已经贯通的隧道无渗水、不变形。特别是东线取水隧道特殊段是一项填补国内设计、施工领域空白的高技术难度、高风险工程,从设计到施工在国内外都无任何可借鉴的类似工程实例。
4结语
市政隧道论文范文高中 第21篇
摘要:
为初步查明中寨隧道所处场地的工程地质条件,对场地稳定性作出评价。采用了工程地质调绘、钻探、物探、瓦斯测试、取样试验等综合勘察方法,对中寨隧道存在的工程地质问题进行分析和评价,指出隧址区的不良地质为采空区、瓦斯、岩溶等,分析了不良地质对隧道建设的影响,初步对隧道围岩级别进行划分,提出相关工程措施建议,为隧道的初步设计提供了工程地质资料。
关键词:中寨隧道,采空区,瓦斯测试,岩溶,物探
1、区域地质特征
地形地貌。拟建中寨隧道地处贵州高原向湘西丘陵过渡地带的北部边缘一带,场区属溶蚀-侵蚀低山地貌。进口端为斜坡地形,自然坡度20°~30°;洞身段穿越山脊,最高点海拔919.6m;出口端为斜坡地形,自然坡度10°~30°。场区海拔介于716.3~950.0m,相对高差233.7m;隧道轴线通过段海拔为751.3~919.6m之间,相对高差168.3m。
地层岩性及地质构造。隧址区地层岩性复杂,上覆第四系残坡积粘土,下伏基岩为二叠系灰岩、煤系,和志留系泥岩等。场区位于扬子准地台-黔北台隆-遵义断拱-贵阳复杂构造变形区,无断层通过,岩层单斜,岩层产状8°~30°∠16°~45°,拟建场区节理发育,主要发育的节理产状有J1:80°∠65°,J2:220°∠33°两组。根据《中国地震动参数区划图》(GB18306-2015)查得场区地震动反应频谱特征周期为,地震动峰值加速度值为,对应地震基本烈度为Ⅵ度。
2、隧址区工程地质问题分析
2.1采空区。隧址区出露有煤系地层,因此,勘察的第一步便是确定是否存在采空区及煤层瓦斯。位于ZK94+990~ZK95+035处的陡崖及陡崖左右一带分布有集中采空区(含硫磺矿开采及小煤窑开采),系当地村民私采滥挖所为。采空区的存在对高速公路建设的影响是严重的。因此,查明隧址区的采空区分布范围是本隧道勘察的重要任务之一。
2.2煤层瓦斯。瓦斯在煤系地层的隧道中始终存在,它是与煤层相生相伴的,煤层瓦斯的存在严重影响隧道施工安全。其浓度的不同造成的影响大小也不同。瓦斯勘察是目前隧道勘察中的一个难点。
2.3岩溶。贵州省每条高速公路建设均会遇到不同程度的岩溶地质问题,本隧道穿越可溶岩区,地层露头中发育有溶洞、岩溶洼地,且地表溶沟溶槽发育。施工中揭露隐伏岩溶(溶洞、岩溶裂隙及岩溶管道等)的可能性较大。查明隧址区的岩溶发育情况也是本隧道勘察的重要任务之一。
3、隧址区工程地质问题评价
3.1采空区。根据调访,开采年限为1950年至1960年左右,大部分井口已垮塌掩埋。洞宽1~3m,高1~1.5m,进深20~120m不等,开采方向多为15°~20°,采空区沿K95+000陡崖下方呈带状开采,形成了平面长约40~120m,宽约700m的煤窑群采空区。硫磺矿厂开采规模较小,开采进深约20~50m,该处采空区离隧道较远,对隧道建设无影响。其余小煤窑的开采规模也较小,开采进深最大处约为100m。该区的采空区位于隧道上方78~100m处,对隧道无直接影响。但隧道施工爆破震动,可能导致采空区上部积水老煤窑底板岩层的垂向裂隙、节理与下部隧道连通,也可能沿岩性接触带贯通进入隧道,带来高能涌水的重大安全风险。
3.2煤层瓦斯。采集了深孔揭露的代表性岩样,进行了隧道瓦斯测试。
(1)瓦斯含量本次采集了隧道深孔揭露的代表性煤样,进行了室内瓦斯含气量测试,总含气量为17.37mlg-1。测试结果见表1。
(2)瓦斯压力根据隧道S-ZK3深孔煤层瓦斯压力测试,瓦斯压力为0.08MPa,测试结果见表2。
(3)煤的瓦斯放散初速度及坚固性系数根据代表性煤样进行室内检测,煤的瓦斯放散初速度及坚固性系数见表3。
(4)煤与瓦斯突出性危险根据瓦斯压力、瓦斯放散初速度、煤的破坏类型等,对煤与瓦斯突出危险性进行判定,结果见表4。
通过瓦斯测试报告和类似工程经验,隧道穿煤段瓦斯含量0.05mlg-1、瓦斯压力0.08MPa,煤与瓦斯无突出危险性。本次瓦斯压力测试段落钻孔深度50~61.2m,隧道穿煤段的最大埋深为120.6m,要大于测试段落深度,其瓦斯压力随煤层埋深的增加有增高的趋势,在隧道埋深范围内的瓦斯压力要高于此次测试结果。
3.3岩溶。针对岩溶问题,布设了一条可控源音频大地电磁法勘探测线,总长1.2km,该方法具有信号稳定、信噪比高、穿透力强等特点。使用的仪器为美国EMI与Geometrics两家公司联合生产的EH-4。异常出现在在可溶岩地层中,其视电阻率与围岩呈明显低阻变化,推测为溶蚀节理裂隙发育,不排除存在溶洞发育的可能;其中几个异常区域与隧道区域相交,隧道开挖过程中,可能出现涌泥、涌水或空洞现象,需加强防护;ZK95+023附近,两侧岩体视电阻率呈明显变化,结合地调资料分析,推测为岩体变化,岩性界面在ZK94+760附近与隧道相交。存在的问题:因本阶段施工钻孔数量有限,钻孔位置未揭露溶洞发育,但不排除钻孔外其他位置存在隐伏岩溶发育的可能。
4、结论与建议
对隧道建设有影响的不良地质为煤层瓦斯、岩溶,须对不良地质处治后,方可建设。结合以上初步勘察存在的问题及施工图阶段对勘察精度的要求,建议详细工程地质勘察阶段采取有针对性的勘察对策如下。
(1)隧道局部穿越煤系地层,存在小煤窑采区,由于煤层瓦斯的复杂性和不确定性,对隧道安全有较大影响,下阶段需进一步查明煤层与隧道的平面及空间关系,并加强现场瓦斯测试及附近煤矿瓦斯资料的收集,便于设计进行瓦斯隧道的专项设计。
(2)加强深部钻探勘察,对代表性的物探异常进行钻探工作,一方面可对物探成果进行验证,同时可进行声波测井和水文地质试验,以对隧道穿越可溶岩地层段围岩完整性和富水性进行定量评价,并获取隧道洞身段不同含水层的水文地质参数,对隧道涌水量进行精确预测。
市政隧道论文范文高中 第22篇
关于公路隧道质量管理论文
一、完善质量管理的相关体系
建立健全完善的施工质量管理体系,组建公路隧道施工质量管理监督小组,制定符合实际的公路隧道现场施工管理机制,设定具体的质量监督标准,由专职的质检人员进行质量检测监督,严格按照质量体系文件进行质量管理与控制,在质量检查监督管理上要加强施工组织。
首先检查与监理工程师的质量检查二者的统一,特别是经后者的检查合格后才能够允许开展下一道工序的施工,对于检查结果不合格的工程应按照施工规范严格处理。项目负责人要对施工的全过程进行现场监督质量,解决施工中遇到的问题,保证了施工全过程处于受控状态。对于施工信息的原始数据,应及时收集,整理,确保施工过程可追溯,为工程技术交工验收提供数据基础。
二、严格控制施工材料的质量
我国对公路隧道的质量有着严格的高要求,在进行公路隧道的建设时要选择信誉可靠、质量好、生产管理有优势的厂家的材料,并对厂家所提供的材料进行抽样检验,根据检验结果以及供需要求,确定施工原料的供应商。优质的材料可以减少公路隧道的后期维修的费用,能够不断的延迟公路隧道的使用寿命,提高公路隧道的耐久性等,鉴于长期的发展来看,选择优质的材料能够在后续工作当中省去的很大的一部分资金,选取优质的材料不仅能够降低施工当中的成本,而且能更好的提高公路隧道的安全性,保证国家经济不受损失,确保人们的财产安全。
存放方面要根据材料的类型、性质分开存放,并使用隔离设施对不同的材料进行隔离存放。施工单位根据施工区域的环境制定相应的通风、防潮、排水等措施,若环境属于干燥型,应建立水泥库。施工材料到货后,对其进行种类、出厂日期、标号分类标签,避免混乱。现阶段公路隧道施工使用的主要原材料为沥青和混凝土,为了确保公路隧道的质量能够达到设计要求就应该确保施工材料符合相应的技术要求,在混合料的拌合之前应对原材料进行试验,确定合适的配合比。
在进行沥青混合料的拌合时应该在沥青混凝土搅拌站进行集中拌合,拌合过程中的温度、沥青的使用量、混合料出厂时的温度等都应该控制在合理的范围内,拌合完成以后应确保混凝土的拌合均匀,并保证没有分层离析现象。拌合完成以后沥青用量试验、矿料级配以及沥青混合料性能都达到要求以后进行运输工作,运输车辆也有要求,应该使用自卸汽车进行运输。为了保证沥青混合料的均匀性,应在车底板铺上砂石。为了避免出现车辆的粘结,应该使用油水混合液来涂刷车底板。
三、完善施工现场技术管理
随着现代科学技术不断发展,公路隧道施工技术有了很大的进步。公路隧道施工有着点多、面长、线广的特点,其施工环境比较复杂,受影响因素较多,一旦出现安全质量问题就会带来不同程度的安全隐患,特别是隧道施工时,由于地质结构复杂,塌方现象时有发生,因此,在施工过程中的开挖及支护方案是主要难点。
以新疆某地区的隧道施工为例,该隧道全长,沿线布置4条施工支洞,本工程地质条件较为复杂,沿线围岩主要为绿泥石云母片岩,岩石风化较为严重,且节理裂隙发育并有饱和地下水,自稳成型条件较差,塌方时有发生,隧洞洞线长,施工工期紧张,都增加了该工程施工的难度为了增强了岩土体的稳定性,减少塌方现象,在岩土体打入超前锚杆,约束岩土体的变形,通过向围岩施压,原来处于二轴应力状态的洞室表层围岩会处于三轴应力状态,进一步阻止围岩体刚度恶化,特别是松动区范围内的围岩刚度。
在岩土体进行系统锚杆支护,形成加固圈,进而增强了岩土体的稳定性。局部洞段同时使用钢筋网片,因为锚杆布设通常会有一定间距,锚杆约束岩土体的作用较弱,很容易发生坍塌,所以用钢筋网连接锚杆之间支护,可以增强锚杆的有效性。在围岩裂隙发育且围岩破碎的洞段采用加强锚杆与钢筋网片连接后再进行混凝土喷护的方法进行支护。要强化公路隧道施工技术,采用先进的机械设备和施工材料,从各方面提高公路隧道施工技术水平,确保公路隧道工程安全质量问题得到有效解决。最终以高精度、高质量、高进度、无事故完成公路隧道施工建设。
四、施工现场要注意保护生态环境
在公路隧道施工阶段,必然会对公路沿线的自然环境和生态系统的能量流动等造成破坏,打破了生态平衡。例如公路沿线的勘测、施工路基的开挖以及施工材料的堆积等,都会剥夺大量的生态资源。所以说,在施工的过程中,一定要将施工和环保紧密结合。在公路建设中,需要挖取大量的'土石方,需要开挖路堑或者填筑路堤,修建涵洞或者建造桥梁,这一系列的施工必然会引起山区局部地形的变化,因此,在施工前要做好充分的准备,了解这种施工破坏程度对于环境的破坏性,在施工的时候要结合这些情况,尽量的规范施工程序,如对于取土场弃土堆使用的时候就需要规划好,在保证正常施工的前提下少占取有用的土地,取土场的四周边坡也不能够太陡影响到绿化复耕工作的进行。
在土方的开挖和回填的时候需要尽量的避开雨季。而在雨水地面的径流处开挖路基的时候则要设置好临时土沉淀池,以便拦截混砂,保证施工的质量。公路施工中所用的沥青、油料等原材料,一定要讲究规范堆放,不能够靠近水源的地区,防止其流入水源造成污染。在公路的涵洞和桥梁的施工中,也需要严格的检查设备,防止出现油料泄露的现象。
五、加强安全管理
在施工现场加强安全管理,实行安全责任制,贯彻“安全第一,预防为主”的方针,施工负责人要严格安全管理。现场专职安全人员,应在各方配合下,搞好防火、防爆、防坍、防洪、防泥石流等各项工作,消灭各种灾害隐患,确保人身和财产安全。加强监控量测,量测过程中如发现净空位移过大或收敛无明显趋势时,应加强支护,保证施工安全。隧道洞顶以及生产区、营区周围修筑截排水沟,做好各种自然灾害的防范工作。
市政隧道论文范文高中 第23篇
公路隧道工程技术论文
一、公路隧道衬砌形式
隧道衬砌一般常用的形式有整体式衬砌、复合式衬砌、喷锚衬砌。整体式衬砌通常为保证施工安全要采用喷锚支护等临时支护措施,这种支护不是永久的受力结构,只有模筑混凝土才是永久受力结构。复合式衬砌通常也将喷锚支护作为初期临时支护,内层用模筑混凝土作为二次衬砌的永久结构,为防止初期喷锚支护和二次模筑混凝土衬砌间因为材料、受力或其他因素而发生不同变形,进而导致混凝土出现裂纹,一般要在两层间根据需要设置防水层或隔离层。喷锚衬砌是将喷锚支护作为了永久性衬砌结构,适用于地下水不充裕的Ⅲ级或以上围岩的短隧道,喷锚支护是柔性结构,它充分利用围岩的自承能力和围岩形成一体产生共同变形。通过对这三种常用衬砌形式受力结构的分析,我们可以非常清晰地认识到:三种衬砌中喷锚支护极为重要,其施工质量直接关联隧道主体结构的工程质量,如果出现质量问题,将为公路隧道施工以至于整条公路留下质量隐患或安全隐患。
二、公路隧道支护技术
公路隧道初期支护方式要根据施工要求采取不同的支护形式。主要选择的有喷射混凝土、锚杆、钢筋网和钢架等支护形式。
(1)喷射混凝土:其方法大致分为素喷和网喷两种,喷射混凝土的作用是对围岩节理、裂隙起到充填作用,将不连续的岩层层面胶结起来,形成一个整体。同时产生楔效应增加岩块间的磨擦系数,进而有效防止岩块沿软弱面滑移脱落,使表面岩块保持稳定状态。喷射混凝土由于具有一定粘结力和抗剪强度,能与岩层粘贴的同时和围岩形成了统一的承载体系,极大改善了喷层的受力条件。喷射混凝土一定要及时并做到分层施喷,喷层虽薄但其具有较高的强度。这样,喷层有效控制了围岩变形。即使在围岩仍有较大变形的情形下,仍不致于产生坍塌,这样就有效提高了围岩自承能力。同时喷射混凝土能使隧道周边的围岩尽早封闭,进而有效防止了围岩的'进一步风化。在喷射混凝土作业施工中,首先要做好职工准备,准备充足的材料如水泥、砂、石、速凝剂、水等,严格检验材料质量,尽量用新鲜的相容性试验合格的水泥和速凝剂,砂、石含水率要达标。检修好喷射机、混凝土搅拌机等设备,并进行就位前的试运转。风管和水管管路及接头要确保良好。检查开挖断面,将附着于岩面的泥圬冲冼干净。对渗漏较大处做好引排水处理。在做好充足的准备工作后进行操作,操作中要注意:控制好风压、水压和水灰比。要想保证喷射混凝土的质量,降低回弹率,减少挥发粉尘,喷射作业时要求风压控制要稳定,压力大小应调整适当。水压通常要比水压50-100Kpa,要在喷头水环位置形成水雾,充分湿润干拌合料。干喷时,如果喷射的混凝土易粘着,回弹小而且表面湿润光泽,说明水量适中。如发现表面无光、回弹物多、灰尘大、混凝土不密实等现象,则说明水量小。如果表面出现流淌滑动现象,则说明水量大。要掌握好喷射角度和喷射距离。喷嘴与岩面的角度一般要垂直于岩面。如果靠近边墙,应将喷嘴略向下俯约10°左右,使混凝土喷射在较厚的混凝土顶端。喷嘴与岩面的距离一般保持在。每一次喷射混凝土的厚度,应掌握在拱部为5-6cm,边墙为7-10cm。喷射的顺序应先墙后拱从下而上,先喷凹处找平,然后继续向上喷射。喷射时料束要尽量呈旋转轨迹运动,大致要一圈压半圈,纵向按蛇形进行。为保持喷层表面平整,喷射完应对表面再扫射一层。喷射顺序应自上向下,料束要呈横扫方式运动,不能旋转或者停留。
(2)锚杆:锚杆主要起到了悬吊、加固和组合梁的作用,根据材质不同可以分为砂浆、药卷和自进注浆锚杆。其悬吊作用主要表现在:因为外部震动或其他因素导致局部岩块不稳定,为防止岩块脱落,就用锚杆把活动岩块吊挂在稳定的岩体上。或者将应力区内不稳定的围岩悬挂在应力区以外牢固稳定的岩体上,从而保证了这部分岩体能够保持相对稳定的特性。其加固作用主要表现在:从围岩的径向四周科学布设锚杆,随着围岩的挖空,部分松软的围岩在锚杆的固定之下,与主体形成承载拱形,不至于脱落造成围岩形变。喷射混凝土后,与围岩形成一体,共同承载了外部压力。其组合梁作用表现在:锚杆将岩层紧密连接在一起,促使岩层达到了密合程度,大幅增加了岩层间的摩擦力,这种酷似组合梁的结构,充分发挥了固定围岩的作用。使用锚杆时,要注意位置分布,做到布局合理,大部分锚杆位置是沿着隧道周边呈梅花状均匀分布,方向与周边岩面尽量保持垂直。由于锚固力不足或锚杆强度不够往往会导致锚杆失效,这就要求要采取更换高强度锚杆、大径锚杆或增加锚杆数量、增大锚孔直径等有效措施加以解决。
(3)钢架:钢架的优点在于使用方便,效力发挥上具有即发性。由于这种特性,所以,多用于喷射混凝土没有达到固定强度,为防止脱落,架设钢架来进行支护。通常锚杆砂浆在未达到固定强度前也用钢架支护。安装钢架应达几项指标。首先要将底脚下清理干净,没有杂物,安装横向偏差和高程要在±5cm范围之内,垂直度偏差不超过±2°。不要任意割断钢架,各节间要使用螺栓连接。为了加强钢架的纵向稳定性,必须要在钢架间设置钢拉杆,同时要沿着钢架外部边缘隔2m用楔子楔紧,以加强钢架横纵向刚度。隧道在竣工交验时必须在外观上达到不渗不漏的标准。隧道渗漏水是严重的施工质量问题。现如今在隧道施工设计中一般都采取堵和排相结合的办法防止渗漏水问题的发生。通常在二衬施工缝中设置遇水膨胀的止水条,在二衬与初期支护中间设置复合型材料防水板。二衬的背面设置有环向和纵向的透水管肓沟。其中复合型防水板的铺设质量非常关键,所以在铺设防水板施工中必须注意以下几个方面的问题。一是初期支护表面要求大致上达到平顺的标准,要保证锚杆尾部外露长度应严格控制在小于1cm的范围内。二是在防水层施工区段不要有爆破或强震动施工作业。三是防水板与初期支护要达到紧密贴合的标准要求,同时不要绷得过紧,以防止灌注混凝土的过程中将防水板胀坏胀破。四是要求焊接要采取双焊缝焊接工艺,严格避免假焊、漏焊现象的发生。
在施工监控量测的过程中,要根据施工进度适时使用各种量测仪表和工具对围岩变化情况和支护结构的变化状态进行细致量测,为事故和险情的预见及时提供围岩稳定程度和支护结构方面的安全可靠信息,并作为调整和修改支护设计方案的有效依据。在复合式衬砌施工中,依据量测的实际结果来确定二次衬砌施工作业的合适时间。监控量测项目可分为必测和选测两种,必测项目包括洞内外观察、水平净空变化量测、拱顶下沉量测、浅埋隧道地表下沉量测等内容。初期支护和衬砌关系到整个公路隧道的整体工程质量,这要严格按照技术标准和行业规范来施工和检验,要确保工程质量,不但要求初期支护从直观上,表面看无质量缺陷和安全隐患,同时要求在内部结构质量等方面都能够达到规定指标,这也是保障工程质量不容忽视的事情。这就向我们从事公路隧道工程监理的工作人员提出了具体要求,在工程监理工作中,必须抱着对人民、对事业、对自身负责的态度进行工作,要有吃苦耐劳的工作精神,在工作监理工作中达到“两心”,才能保证监理质量。一是要细心,对工程的每个阶段每个细节都要进行细致入微的观察检测,不放过任何一个小的纰漏,从细节入手,做到环环相扣、善始善终。二是要有耐心,要将工程中出现的问题进行深入分析,彻底找到问题出现的原因,提出解决问题、处理问题的有效办法,让施工人员心悦诚服。这样才能互相配合,完全杜绝工程隐患,保证工程质量。
市政隧道论文范文高中 第24篇
摘 要:结合工程概况,介绍了工程设计技术及创新要点,通过对结构受力、现场情况的分析和研究,对基坑和主体结构的设计进行了阐述,工程实践表明,收到了良好的施工效果,可为以后的同类工程提供数据和经验。
关键词:明挖隧道,基坑,主体结构,配筋设计
1 工程概况
本明挖隧道工程呈南北走向,隧道两端与盾构段相连。地理位置在广州市番禺区榄塘村和东沙村一带,地形开阔平坦,多为果园、农田、菜地、水塘。起讫里程为:YDK21+887~YDK23+278,隧道长1391m,存车线长264m,隧道单线总长3046m,总建筑面积约17800m2。
本工程采用明挖隧道法施工,隧道埋深在之间。线路最大纵坡10‰,最小纵坡2‰。线间距为→→变化。本工程线路变化频繁,隧道附属设施较多。
2 工程设计技术及创新要点
1)地铁区间隧道与新光快速路工程结合建设,减少工程投资。由于待建设的新光快速路是番禺区南北走向60m宽的城市快速主干道,地铁三号线汉市区间隧道沿此道路,地铁工程充分利用新光路的红线范围作为工程用地和施工用地。这样两项工程同用一块地,地铁工程节约施工用地约万m2,并实行统一征地减少较多征地、借地的繁琐过程,争取施工工期。在地铁隧道施工完毕后按路基要求及标高回填土方,减少了路基施工对隧道结构造成的影响。线路设计时结合路面标高,合理调整隧道纵剖面设计,考虑隧道覆土控制在之间,有效地控制外荷载,使主体结构断面更合理,降低工程造价。
2)隧道基坑采用放坡大开挖,部分采用搅拌桩加固或土钉支护,取得了良好的经济效益。隧道所经之地多为果园、农田、菜地、鱼塘,基坑边只有少量三层、四层的民房,且地铁区间隧道与新光快速路合建,因此给放坡开挖提供了充足的施工用地。在基坑南端地段受用地、邻近构筑物的影响采用了土钉墙支护。此方
案比同等条件下采用钻孔桩加内支撑围护减少工程投资约980万元。
3)区间线路复杂,隧道附属结构多。由于从汉溪站到市桥站区间总长为6km多,行车速度为100km/h~120km/h,除长明挖段,其余均为盾构法隧道。明挖段中部左线外侧设置了约260m长的临时存车线,在存车线起、终点处设置了左右线单渡线,还有地铁区间必要的附属结构:轨排井、联络通道、水泵房、废水池、风机房、跟随所等。
4)首次采用土建结构断面扩大、渐变作卸压,解决减弱压力变化率,满足了运营要求,提高了乘坐的舒适度。由于单渡线及存车线设置,出现多个左右线互通的大断面,通风系统模拟计算显示,若不对压力突变的地点进行特别处理,列车高速通过中间风井时车头的最高压力变化率将达到990Pa,车尾的压力变化率也将达到640Pa,这已经大大超出了标准要求,压力变化率过高将导致乘客耳膜产生刺痛不适感觉。通过分析压力变化率,在存在压力突变的隧道段对卸压方案进行比较。综合运营、经济、施工各方面的优缺点,采用在突变点后100m隧道段断面扩大、渐变的卸压方案,即结构断面的净宽度及净高度沿隧道纵向渐变,此方案增加土建设计及施工难度,但运营安全性较高,将为以后的地铁运营节省成本。行车速度不受影响,为今后类似工程提供了可借鉴的范例。
5)为满足隧道功能要求,隧道主体结构断面变化频繁、复杂多样,按形式、尺寸等共分有15种断面。分别对每种断面进行断面设计、配筋设计,针对隧道不同地段,满足隧道限界、功能要求的前提下精心设计,设计最经济的结构断面,控制工程量。
6)本着“安全、实用、经济、高效”的原则,遵循以人为本,技术创新的设计理念,利用广州地铁总公司丰富的建设与运营经验,指导本工程的设计和建设。本项目土建工程承包合同价为6129万元,隧道单线总长为,单线延米为万元。
3 基坑设计
本明挖段所经之地均为农田、果园,地势开阔而平坦。施工期间对地面沉降要求不严,基坑采用分级放坡开挖方案。
1)设计标准:基坑侧壁安全等级为二级,重要性系数取基坑边坡抗倾覆稳定系数不小于,抗滑移系数不小于;基坑边坡最大水平位移不大于,且不大于50mm;地面最大沉降不大于(H为基坑深度)。荷载取值:水土自重及附加荷载;地面超载为20kN/m2。砂性土采用水土分算,其余土层采用水土合算。
2)隧道基坑深为9m~15m,1∶1分三级放坡,每一坡高控制在之内。坡面用纵横间距的16钢钎钉挂网距250mm的钢筋网,喷射100mm厚的C15混凝土护面,并设纵横间距的50泄水管。
3)对于软弱土层边坡地段,在基坑开挖前,采用纵横间距为1m的500搅拌桩,预先加固地层。同时对地下水发育地段用相互咬合150mm的500搅拌桩作止水帷幕,边坡用纵横间距1m
的500搅拌桩加固地层,坡脚打45(t=4)@500,L=2m的钢管桩一排,以保证基坑边坡的安全。
4)对特殊地段:端头盾构井及施工用地受限制的边坡采用了土钉墙支护,8m~12m长纵横间距的28钢筋锚杆,土钉墙坡为65°~75°,坡面挂网、喷混凝土。
5)采用《理正深基坑支护结构设计软件F-SPW》进行局部抗拉设计、整体稳定设计、土钉设计。基坑计算结果见表1~表3。
4 主体结构设计
本明挖段主体结构均为箱形框架结构,有单箱、双箱、三箱、四箱、五箱5种形式,按其结构尺寸大小分,结构断面共有15种之多,并且有不少的断面在宽度及高度上沿其长度方向还是不断有所变化的。
主体结构按平面框架进行受力分析、配筋设计主体结构断面汇总见表4。
主体结构的防水
结构防水设计所遵循原则:“以防为主、防排截堵相结合、因地制宜、综合治理。”明挖区间的隧道结构防水等级为二级;风机房、配电房的防水等级为一级。以结构自防水为重点,附加外防水层为辅,特别要处理好施工缝、变形缝的防水问题。
结构顶板及边墙采用自粘性改性沥青防水卷材、底板采用EVA防水卷材全外包防水。主体结构沿纵向长度每间隔12m左右设环向施工缝,每间隔60m左右设变形缝。
5 结语
广州市轨道交通三号线汉溪站—市桥站区间明挖段隧道工程于20xx年5月16日开工,于20xx年1月31日完工,总工期为626d,于20xx年顺利通过工程验收,并顺利移交建设单位,现广州三号线地铁已投入运营。
本明挖隧道设计主要根据工程的实际情况、场地条件和工程特点及难点等方面进行具体分析,遵循以人为本,技术创新的设计理念,对主体结构、基坑方案等方面进行合理的分析和设计,满足了工程的需要;在施工中,以信息化技术进行指导,克服了地质条件复杂、场地低洼、雨季施工、工期要求紧等不利因素,最终取得了成功,而且节省了建设成本,加快了建设速度,并为以后的地铁运营节省了成本。
参考文献:
[1]施仲衡.地下铁道设计与施工[M].西安:陕西科学技术出版社,1997.
[2]DBJ/T15-20-97,建筑基坑支护工程技术规程[S].
[3]GJB02-98,广州地区建筑基坑支护技术规定[S].
市政隧道论文范文高中 第25篇
摘要:介绍了隧道工程机电设备智能监控系统的主要内容、建立隧道工程机电设备智能监控系统的必要性以及隧道工程机电设备智能监控系统的构成,细致分析了隧道工程机电设备的维护管理工作中的常见问题和如何更好地进行隧道工程机电设备的维护管理工作,希望能够为日后相关工作提供借鉴。
关键字:隧道工程;机电设备;智能监控;维护管理随着现代化进程的加快,我国的交通系统也在不断发展和完善,高速公路越来越多,发展建设山区高速公路会是未来高速公路发展的一个趋势,这会对隧道工程机电设备的智能监控和维护管理提出更高的要求。隧道工程机电设备智能监控和维护管理是近些年才发展起来的全新行业,科技含量高,行业发展和更新也很快。同时,随着隧道工程的发展,隧道工程机电设备的智能监控和维护管理工作也会变得越来越重要。因此,需要重视机电设备智能监控和维护管理工作并培养工作人员的探索精神、创新精神,从而促进机电设备智能监控和维护管理工作的完成。
1隧道工程机电设备智能监控系统
系统概述
机电设备的智能监控系统一般包括计算机技术、现代信息处理技术、集成电子技术、智能自动化技术、现代通信技术、管理与决策支持技术和控制与系统技术等,该系统通过信息的搜集、传送、加工以及使用,充分地将资源整合并加以应用。
建立隧道工程机电设备智能监控系统的必要性
隧道工程的安全性主要受地质因素和管理因素的影响,机电设备智能监控系统可以实时确定隧道管理是否到位,发生地质灾害时,可以通过智能监控确定隧道的安全性,只要隧道出现异常情况,智能监控系统可以启动应急模式,进行防灾、救援和事故处理指挥,从而减少损失。因而,建立隧道工程机电设备智能监控系统是很必要的。
隧道工程机电设备智能监控系统的构成
根据隧道管理的需求,隧道机电设备智能监控系统包括多个部分,这多个部分同时工作以提高隧道的安全性。
综合监控系统
综合监控系统涵盖了多个组成部分,有火灾自动报警和联动子系统、监控子系统、电力监控子系统与隧道紧急对讲电话等,这些系统通过隧道职能中心互相构成网络,一起工作,极大的提高了隧道安全性[1]。⑴综合监控中心平台综合监控中心的局域网一般都是采用标准以太网,同时,鉴于双网热备、冗余、开放、易扩展的优势,目前基本都使用双网,这样可以使监控系统趋于稳定状态,即使产生了单点故障,也不能造成别的设备的非正常运转。⑵设备监控子系统设备监控子系统通常由现场总线、控制器及其温湿度探测器构成,呈分散式。其系统直接接入局域网,可以采集环境和机电设备的信息。⑶火灾自动报警子系统火灾自动报警子系统包括消防专用电话总机、火灾报警主机、联动控制器、隧道紧急电话主机、光电式感烟探测器、感温光纤探测器、信号线缆、手动报警按钮等设备。他会对设备内的情况进行实时监控,发生火灾时,系统将首先确认火灾的发生,然后及时发出警报,向各部门通知,再通过广播让大家得知火灾消息,及时进行人员疏散,并且联动控制排水系统和诱导发布系统、车道灯控系统以及电气照明系统等。他有抑制火灾的扩大,减少财产损失及人员伤亡的优点。⑷电力监控系统电力监控系统虽多为分散安装,但其管理模式又较为集中,通过站级管理层、网络通信层和间隔设备层多个部分来实现监控系统的高效运行。此系统依托网络平台保证测控单元与交直流电用电系统监控安全运行,并使得间隔设备和站级管理层设备连了起来。
智能交通系统
智能交通系统包括中心监控平台、高清视频事件检测子系统、交通诱导发布子系统、警用无线通信子系统、违法抓拍子系统等一系列的部件。
⑴高清视频事件检测子系统
高清视频事件检测子系统的设备构成复杂。前端设备包括高清彩色摄像机、手动变焦镜头、解码器、视频编码器、云台等。中心设备通常包括中心控制服务器、系统管理服务器、高清视频事件检测服务器、高清视频事件检测主机等多个部件。他们相互配合,实时监控、组织和控制交通,确保交通状况良好[2]。
⑵交通诱导信息发布子系统
交通诱导信息发布子系统由两部分组成,一是交通诱导屏;二是诱导信息分析处理。该系统的设备包括诱导屏控制单元、LED交通诱导屏、交通诱导服务器、操作终端等。系统会根据交通状况而改变显示的内容,缓解道路拥堵,确保交通畅通。
⑶隧道车道灯控制子系统
此系统主要包括车道灯信号机、隧道车道灯组、中心管理主机及控制软件等几个部分。该系统可以采集交通信息,发出指令,控制信号灯,从而达到管制交通的作用。同时,隧道车道灯控制子系统可以配合交通诱导信息发布系统阻止车辆进入隧道,方便及时地实施救援活动。
⑷警用无线通信子系统
此系统将无线通信子系统和交管无线通信子系统联合,采用直放站加漏缆方式。其主要被_门和交管部门使用以处理各种突发事件。
⑸隧道超速违法抓拍和禁行子系统
此系统包括数据接收处理服务器、前端违法抓拍设备、数据库服务器、和操作终端等多个部分。其主要作用是可以抓拍超速车辆。
2隧道工程机电设备的维护管理
隧道工程机电设备维护管理的必要性
首先,机电设备是否能正常运转,关系着高速路上的一切事宜,包括收费、监控系统、通讯和稽查等。其次,对设备不达标的维护管理会缩短设备的使用期限。同时也会增加维修费用,增加了经济支出。此外随着公路建设的发展,其管理面临着巨大的压力,而隧道作为其重中之重,其内部机电设备的正常运行是交通畅通的基础。因此,要想使得隧道工程机电设备得到更好的养护,就必须要有科学、规范的管理。
隧道工程机电设备维护管理常见问题
效率低
我国隧道工程机电设备的维护管理主要采用分散式运作模式,因为受隧道特殊的地理位置和企业传统管理体制的限制,所以大多数高速公路的管理效率都比较低。通过实践证明了在高速公路运行初期采用分散式运作模式有利于机电设备的维护管理,但随着公路的发展壮大,这种运作模式的缺点逐渐凸显,其需要庞大的人力资源支撑,这就增加了成本和人员的浪费,降低了经济效益。
缺乏隧道工程机电工程养护系统评价标准
目前,在隧道工程完工后,很多单位只重视路面工程。同时很多单位急于交工,不注重隧道的安全生产工作,导致很多设备不能被及时养护而出现故障,从而影响到施工进度与安全。因此,为了保证隧道施工工作的安全,建立一套合理的机电设备维护管理效果评价体系是很重要的[3]。
漠视安全环境问题
隧道工程在施工时可能会出现对实际情况考虑不周而留下安全隐患的情况,日常机电设备的使用中存在操作失误的情况,这些都会影响机电设备的安全运行。
如何更好地进行隧道工程机电设备的维护管理
实现资源共享
为了减少管理成本,机电设备维护管理部门可以根据长远目标,结合自身相关优势,选择适合自身发展的维护管理模式,组建统一的维护组织,将人员配置、职责划分、运作流程以及信息化管理等工作做好,以实现资源共享,更好地进行机电设备维护管理工作。
建立合理的养护系统评价标准。
此评价体系既要能反映各项指标,也要能让有关人员和部门接受。通过这个评价体系,能够让机电设备在安全的状态下高效运行,不断地增加经济收益,带动行业的全面发展。
加强隧道运营企业自身维修队伍建设
维修队伍应跟进机电设备的建设期、验收期。在隧道工程的建设期间,为了保证机电设备得到良好的保养,维修队伍需要对机电系统一些施工的基本情况要有足够的认识,同时要求对施工的图纸有细致的了解,相关技术人员在验收隧道时,也应该根据图纸的实质内容进行严格验收,确保工程的质量达标。此外,维修人员应在机电设备保修期内虚心向技术人员学习,当机电设备发生故障时能发挥主观能动性,及时解决问题。
3结语
正所谓百年大计,质量第一。对隧道工程机电设备实施智能监控及维护管理是必要的,具有重要的经济价值。运营单位应重视隧道工程机电设备的智能监控及维护管理,从长远的经济效益出发,保证机电设备的安全性,同时要积极采用先进技术,才能发挥最大的效益。
参考文献:
[1]张卫民,厉瓅,于泉,等.高速公路机电设备维护维修定额研究[J].中国交通信息产业,20xx(10):60-62.
[2]周晓梅,周旭,刘大伟.复兴东路隧道监控系统软件的设计与实现[J].上海船舶运输科学研究所学报,20xx(1):32-39.
[3]谭华,尉自斌.贵州省隧道群机电工程监控模式的研究[J].公路交通科技,20xx(6):140-144.
市政隧道论文范文高中 第26篇
【摘要】隧道工程所处的地质环境较为复杂,且在工程建设过程中的信息管理方式落后,给隧道的施工带来较大的风险。为了控制重庆轨道交通十号线南坪站至南滨路站区间隧道建设过程中的质量、安全、进度、成本等因素,综合利用物联网、大数据、云计算等方法构建基于BIM的隧道信息化施工管理系统。所建立的BIM系统将监测点与BIM模型相关联,实现监测数据的可视化显示。BIM系统与施工管理的结合推进了隧道项目施工管理的信息化研究,提升了BIM技术在隧道工程管理中的有效利用。
【关键词】BIM;隧道工程;信息化施工;管理系统
一、引言
随着我国城镇化水平的不断提高,城市建设用地紧缺、交通拥堵等问题也日益突出,开发和利用城市地下空间是实现城市可持续发展的有效途径[1]。现今,隧道工程已成为交通、能源、供水、储存、城市公用事业、军事设施、大坝和防洪工程的组成部分。然而,与传统的建筑工程相比,隧道所处的地质环境较为复杂且这些地质信息难以完全掌握。此外,由于各工程参与方信息共享不足,信息管理方式落后等问题,隧道施工表现出不确定性和风险[2]。建筑行业的建筑信息建模(BIM)集成了物联网、大数据、云计算等一系列先进信息技术,可以涵盖整个项目生命周期中施工所需的几乎所有信息[3]。BIM技术在隧道与地下工程等基础设施项目建设中的应用还处于发展阶段,未来具有很大的应用潜力[4]。在隧道施工阶段会产生如项目文件、隧道分析、现场测量和项目状态报告等数据[5]。一般情况下,项目参与者之间的数据交换是手动进行的。然而,这些信息都是高度相互依存的,需要通过媒介整合,BIM可以为隧道等复杂项目提供一个集成和协作的平台[6]。目前,国内很多学者对隧道工程信息化施工开展了一系列研究。黄福杰等[7]基于Bentley系列软件研究了沉管隧道的模型建立,并将其应用于碰撞检查、工程量辅助统计、力学分析等,提高了工程项目建设的质量和效率。黄琦茗等[8]使用MicroStation二次开发工具研究了隧道的参数化建模方法,同时也实现了工程量的自动统计,提高了设计效率。王潇潇等[9]研究了建立面向工程结构化对象的隧道BIM模型的方法,并运用到4D虚拟施工及工程自动核算中。丁延书[10]将三维激光扫描与BIM技术相结合,实现了在隧道工程施工中的模型重构和仿真。廖峻等[11]基于B/S框架开发了隧道管理系统,主要能够实现不良地质管理、工程资料管理,构件管理等问题,提高了隧道的信息化管理水平。张志伟等[12]依托北京地铁19号线研究了基于BIM和GIS的三维场景显示和风险巡视,能够有效地集成风险信息,提高风险的识别能力。目前基于BIM的隧道管理系统主要针对隧道工程的施工进度和施工质量的管理,将隧道施工安全、进度、质量、成本等统一起来形成一个完整的体系的研究还比较少。本文基于重庆轨道交通十号线南坪站至南滨路站区间隧道工程,开发了基于BIM的隧道信息化施工管理系统,包括的功能有施工模拟、人员定位、视频监控、安全监测、质量检查。以隧道的施工质量、安全、进度和成本为切入点,形成了隧道的信息化施工。
二、工程背景
重庆轨道交通十号线南坪站至南滨路站区间隧道工程,起点里程为YK5+353|179,终点里程为YK6+350|497,长度约997|3m。区间线路自南坪站出发后向北布设,下穿洋河南滨花园小区、金鸣公司后接入南滨路站。本区间隧道拱顶埋深25m~54m,穿越岩层主要有砂岩和砂质泥岩,围岩级别为IV级。隧道按新奥法原理设计,采用钻爆法施工,复合式衬砌结构。为了提高该隧道施工管理的信息化,引进了BIM模型对施工现场的质量、进度以及安全等方面进行有效的把控,本文基于AutodeskRevit软件进行建模。由于隧道工程在空间上是条带状分布的,因此在隧道模型建立时,需要考虑隧道在不同位置构件的特殊性和互通性。对族文件进行统一的建立和管理,简化模型的建立流程、减小所建立隧道模型的体积,所建立的隧道BIM模型如图1所示。
三、系统架构设计
本文所建立的基于BIM的隧道信息化施工管理系统采用B/S架构。B/S架构是将浏览器作为系统的客户端,几乎所有的电脑、手机及平板都装有浏览器,用户可以在浏览器上完成数据上传、管理及交流共享,各个用户之间的信息交流非常方便。也不需要安装专门的客户端,自然也不需要进行客户端维护升级,软件维护成本相对较低,同时由于B/S架构的软件系统大部分的操作都在服务器中完成,对客户端的硬件性能求较低。如图2所示,基于BIM的隧信息化施工管理系统由用户层、功能层、数据层和设备层4层架构组成。用户层是指为系统的登录提供多方人员的支持。为了能充分的发挥本信息管理系统分享信息的优势,但又同时兼顾信息安全性。功能层是指该系统主要包括施工模拟、人员定位、视屏监控、安全监测和质量检查等功能。数据层是指使用MicrosoftSQLServer来建立人员定位数据库、监测数据库和质量检查数据库等。设备层包括RFID芯片、高清摄像头和监测传感器等,动态地采集数据,并将数据通过网络转给数据库和服务器。
四、系统功能应用
以重庆轨道交通十号线南坪站至南滨路站区间隧道工程为依托的BIM信息化施工管理系统集成施工模拟、人员定位、视频监控、安全监测、质量检查,为指导隧道信息化施工提供了技术依据。
1、施工模拟
模型的构建和管理基于工作任务分解结构(WBS),分别列出各子项目的计划内容以及各子项目的计划起始和结束时间。根据实际的施工过程,将每个构件的实际起始和结束时间上传到系统中。最终,系统可以建立一个包含计划起始和结束时间、实际开始和结束时间的4D模型数据库。图3为利用BIM相关技术则可以对隧道模型进行施工模拟与对比。从而实现了对隧道施工的前期预设、中期实时记录以及后期分析等的模拟。管理人员可通过BIM管理系统监控施工的全过程,及时发现施工技术的危险源头,减少安全问题、质量问题、返工和整改问题等。
2、人员定位
当隧道施工人员进入现场施工时需要佩戴装有信息标识卡的安全帽。当施工人员经过隧道的信号接受识别设备时,可以接收到人员的信号。通过系统网络的数据传输交换,把此人经过的位置、时间等信息传输至后台数据记录中心,实现施工人员的精确定位。随着系统的不断运行更新,实现人员的实时定位和追踪,转换后在BIM模型上得到施工人员的实时位置。如图4所示,在BIM模型中可以实时显示隧道施工人员在某个区域的位置信息,同时可以显示隧道内的人数、人员分布以及身份等相关的信息。该系统也包括人员的定位功能,只要将待搜索定位人员的姓名或工号输入系统,该人员的位置信息就会显示。此外,当施工人员遇到危险情况时,可以实时发出报警信号。该功能的研发能够在一定程度上减少由于人为因素而造成的一系列事故。
3、视频监控
市政隧道论文范文高中 第27篇
摘要:在隧道工程施工过程当中,地下水对施工安全的影响是多个方面且难以避免的;而当隧道已经建成后正在运营时,地下水也有一定几率会对隧道的运营安全造成影响。若对地下水的治理措施不齐全或不合理,则会对隧道的修建者和使用者的人身安全造成很大的危害。因此,在修筑隧道时,要特别重视隧道的防排水工程质量。本文即是从对地下水危害的探究出发,研究隧道工程中现行的地下水防治处理方法,分析防排水工序施工过程当中有可能出现的或已经发生在建成隧道中的问题,借此提出合理可行的施工建议。
关键词:公路隧道,隧道施工,防排水
0前言
在讨论隧道防排水工程的理念和原则时,不妨首先看看发达国家的做法。如在德国,隧道统一采用全封闭结构,围岩中的地下水不进入隧道衬砌内轮廓线;在法国,则采用以排水为主要治水措施的方案,隧道路面下设专用的围岩水排水管道,保证水不流入建筑限界内。而在我国,各地地质水文条件差异巨大,难以制定共同的防排水处理标准。所以需要视具体情况而定,结合各个工程的水文地质条件来制定相应的防排水方案。但总体来讲,防排水工程最基础的理念是截水、堵水和排水相互结合,共同作用,综合治理。
1地下水对隧道施工的危害及成因
在隧道工程修筑完成之后,隧道周围会被地下水包围,这些地下水流动性和渗流性都极强。在施工过程当中需多方面考虑地下水对隧道结构可能造成的危害,并分析其成因。水对隧道造成最大影响和最严重围岩的阶段即是施工阶段,它们主要来自于隧道围岩中所含的地下水或部分地表水,以渗漏或涌出方式进入隧道内造成的危害。其直接影响包括空气中水分含量过高影响隧道内施工作业人员的身体健康、使施工机械设备锈蚀、造成漏电事故等,严重的掌子面涌水甚至有一定几率会直接导致围岩崩塌,对现场施工管理人员的人身安全造成威胁。这种危害来自于开挖前没有做必要的地质预报,或地质预报不准确、不及时,也有一定几率会由施工方防水措施不及时或不恰当造成,是可以被避免的危害。
2地下水对隧道运营的危害及成因
隧道漏水、隧道涌水
在隧道运营过程当中,地下水和地表水会通过各种形式深入隧道结构内,进而对隧道结构的安全和稳定造成伤害,对隧道的受力结构、牵引类型、周围地质条件产生影响,使得衬砌混凝土腐蚀、剥落,造成其结构变形、弱化、破坏;严重者有一定几率会导致隧道限界受侵,直接中断隧道正常运营。
衬砌周围积水
在运营隧道中,地下水和地表水会源源不断地渗流进隧道衬砌外轮廓线内,一旦不能及时排出则会对隧道本身造成伤害。水压较大时会直接导致衬砌变性,进而破坏衬砌;围岩结构的软弱部分会因为过高的水含量而软化、泥化,进而导致承载力减小甚至失去承载力,对衬砌压力增大而导致衬砌破坏;引发围岩的膨胀作用,经由围岩压力使衬砌变形破坏。
潜流冲刷
潜流冲刷指由于地下水在隧道衬砌结构周围产生一个渗流场,这个渗流场会溶蚀隧道的衬砌和围岩。将会导致拱顶下沉,边墙、仰拱开裂破坏,严重时甚至会导致整体道床下沉;围岩错动导致衬砌开裂破坏等严重后果。可以看出,地下水对隧道的危害需要引起勘察、设计、施工等的各方人员高度重视。危害产生的原因是来自多个方面的,比较重要的原因大体有以下几种:勘察设计中对隧道防排水的需求预估不足;施工阶段的作业没有严格参照设计方案和预定计划,有一定几率会使得地下水涌出等;以及地质条件本身造成的客观问题,所以,在施工准备阶段,就应该保证有完备的应急处理手段和前瞻性的预备措施。
3隧道工程防排水施工存在的问题
在正在建设的隧道中,相当一部分隧道会出现地下水侵害,侵害的程度各有轻重。轻则导致隧道施工环境潮湿,影响施工人员舒适度;重则破坏隧道主题结构,导致工程质量出现问题,进而拖慢施工进度;最严重的情况下,甚至可能直接导致大规模涌水,导致人员伤亡。从这些出现水害的隧道中,我们不难总结出几个在防排水施工中存在的问题。
防水层破坏性损伤
防水层对隧道防水及其重要,但因防水层的材质和功用限制,它的强度一般较低,在防排水工程中,防水层极易遭到被破坏。隧道内施工环境恶劣,程序复杂且相互交叉干扰,极容易导致防水层破碎。尤其是被锚杆、钢筋、绑扎铁丝等初次衬砌和二次衬砌中外露的尖锐物刺破,后续爆破对防水层也会造成不同程度的伤害。
复合衬砌结构对防水层的伤害
公路隧道多采用复合衬砌,分为初次衬砌和二次衬砌两部分,防水板铺设于两层衬砌之间,同时承担了防水和传递围岩压力的功用。在复核衬砌结构中,防水层还承担了传递围岩压力的作用,将会收到初期支护和二次衬砌的挤压;同时由于隧道内部和衬砌外侧存在温度差的原因,初期支护和二次衬砌之间会产生错动,进而摩擦防水层,处于高压条件下又承受摩擦力的的防水层极易因此而磨损、裂口直至完全失能。
4结语
隧道防排水工程是一个复杂的问题,全国各地地质水文条件差异巨大,不同的水文地质条件下,设计工作和施工作业也应因地制宜,防排水工程最基础的理念是使用以排为主、截堵排相结合的综合治理办法,确保结构不渗不漏。施工前做好地质预报,提前了解掌子面以后的水文环境。隧道整体防水系统关键应该充分利用衬砌混凝土自身的防水能力,提高防水板铺设质量。由此,从勘测,到设计,到预报,再到施工,对隧道的防排水工程层层把控,环环相连,相信可以使隧道工程中现行的地下水处理方案取得有效的进步,为隧道工程质量的整体提升做出切实贡献。
参考文献
[1]王成.隧道工程[M].北京:人民交通出版社.20xx
[2]隧道防排水工程[J].中铁四局四公司,20xx,(05)
[3]侯广双.浅析公路隧道排水工程的施工[J].工程科技,20xx,50(2):P35~47
市政隧道论文范文高中 第28篇
我国经济社会的高速发展极大的推动了工业化和城市化建设的步伐,同时也在很大程度上促进了我国的交通系统不断取得发展进步,日趋完善。目前,随着我国高速公路项目的建设越来越快,高速公路的里程不断增长,并开始向山地发展,结合我国现状可以预测在山区建设高速公路极有可能会是未来的一个发展方向,这无疑将大大提高对于隧道工程机电设备的智能监控和维护管理的要求。隧道工程机电设备智能监控和维护管理作为当今时代的一个新兴行业,其特点是具有极高的科学技术含量,行业的快速更新发展。与此同时,隧道工程的不断发展进步,也使得隧道工程机电设备的智能监控和维护管理工作愈加值得重视[1]。因此,为了保证机电设备智能监控和维护管理工作的顺利完成,不仅要将机电设备智能监控和维护管理工作放在突出位置,更要培养出具有进取精神和实践经验的优秀工作人员。
1隧道工程机电设智能监控系统
系统概述
隧道工程机电设备的智能监控系统需要众多不同的技术予以支持,通常包括计算机技术、集成电子技术、现代信息处理技术、现代通信技术、智能自动化技术、和管理与决策支持技术等。隧道工程机电设备的智能监控系统可以对信息进行搜集,然后进行加工进行使用,在此过程中进行信息的资源整合,从而达到最佳效果。
建立隧道工程机电设备智能控系统的必要性
建立隧道工程机电设备智能监控系统是十分必要的,因为该系统在保障隧道工程的安全方面扮演着重要角色,目前,隧道工程的安全性的主要影响因素一是地质而是管理。一旦隧道工程发生地质灾害,机电设备智能监控系统就会启动应急模式,利用实施监控确定隧道内部的安全,并根据实际情况来进行救援和处理,可以尽最大可能减少人员伤亡和财产损失。
隧道工程机电设备智能控系统的构成
智能交通系统
(1)高清视频事件检测子系统高清视频事件检测子系统的设备是由多种复杂设备共同组成的,包括高清彩色摄像机、视频编码器、云台、解码器等等[2]。其中中心设备主要包括高清视频事件检测服务器、中心控制服务器、高视视频事件检测主机、系统管理服务器等多个部件。各组成部分的配合协作,能够管控车辆确保良好的交通状况。(2)隧道车道灯控制子系统隧道车道灯控制子系统主要包括隧道车道灯组、车道灯信号机、控制软件、中心管理主机等几个部分,该系统主要通过控制信号灯的方法负责管制交通,并且系统可以在救援工作中发挥作用,即通过和交通诱导信息发布系统合作来阻止车辆进入发生危险的隧道。(3)交通诱导信息发布子系统交通诱导信息发布子系由诱导信息分析处理和交通诱导屏两部分组成的。该系统的主要是由LED交通诱导屏、诱导屏控制单元、交通诱导服务器和操作终端等设备共同构成的[3]。交通诱导信息发布子系统能够根据交通路况的实时变化来发布信息,从而引导车辆分流,减少车辆的拥堵。(4)隧道超速违法抓拍和禁行子系统该系统可以通过前端违法抓拍设备、数据接收处理服务器、操作终端等多个设备的配合抓拍到超速车辆。(5)警用无线通信子系统警用无线通信子系统主要是通过交管无线通信子系统和无线通信子系统的结合发挥作用的。通常情况_门和交管部门在处理各种突发事件时用该系统进行处理。
综合监控系统
(1)综合监控中心平台综合监控中心通常以标准以太网作为局域网,且由于双网具有明显的优势,大部分都采用双网。这使得监控系统取得了极佳的稳定性,在单点故障的情况下,不影响其他设备的工作运行。(2)火灾自动报警子系统火灾自动报警子系统的设备非常复杂,主要包括消防专用电话总机、隧道紧急电话主机、火灾报警主机、手动报警按钮感温光纤探测器等设备。该系统具有实时监控的功能,遇到危险时,第一时间察觉火灾发生的地点,及时向相关部门发出警报,再通过广播将火灾的消息告知公众[4]。并且该系统可以通过诱导发布系统和控制排水系统以及电气照明系统等的配合来进行人员疏散、及时救援、减少人员伤亡、减低财政损失。(3)设备监控子系统设备监控子系统直接接入局域网,由现场总线、控制器及其温湿度探测器等设备呈分散式构成,可以对环境和机电设备的信息进行采集。(4)电力监控系统电力监控系统包括网络通信层、站级管理层、间隔设备层多个部分,此系统可以通过网络平台促使测控单元与监控系统得以正常运行。
2隧道工程机电设备的维护管理
隧道工程机电设备维护管理的必要性
机电设备对于高速公路的正常运作来说具有极端重要性,高速公路的收费、通讯和稽查等活动的开展都必须依靠机电设备的运行。对于隧道而言,机电设备就更加重要。但是,如果没有对隧道工程机电设备进行维护管理或是维护管理不达标,都会对设备的使用寿命造成不利影响,并且会增加不必要的维修费用[5]。所以说,对隧道工程机电设备进行维护管理不仅是十分必要的而且具有重要意义。
隧道工程机电设备维护管理中的问题
效率低下
尽管我国公路的建设规模不断扩大,但隧道工程机电设备的维护管理工作由于受到我国目前传统管理体制的影响,加上某些隧道在特殊的地理位置上,分散式的运作方式使得维护管理效率低下,管理工作困难重重,不仅造成人员的浪费,也使得经济效益难以取得最佳效果。
缺乏隧道工程机电工程养护系统评价标准
我国目前尚未形成一套合理的受到多数人认可的隧道工程机电工程养护系统评价标准,某些单位常常为了及时交工,往往只重视路面工程,根据经验做出判断,对于施工安全缺乏重视,难以保障施工的进度和安全。
进行隧道工程机电设备的维护管理的建议
实现资源共享
更好地进行机电设备维护管理工作,不仅需要个单位的协作配合还应做到信息共享,明确各自的责任、细化工作流程,统一人员的配置,整合资源并加以共享,使得各单位各系统都能更好的发挥各自的只能,使隧道机电设备维护管理工作取得更好的效果。
建立合理的养护系统评价标准
为了保障施工的质量和安全,建立一套合理的受到多数人认可的隧道工程机电工程养护系统评价标准是十分重要的,此评价体系不仅要包含多个指标,还应具备可量化和可执行的特点,对于隧道工程机电设备维护管理做出规范和要求。
加强维修队伍的建设
维修队伍应该在隧道工程的各个方面和各个阶段都做到绝不缺席,对机电设备高度负责也是对施工安全做出保障[5]。为了更好地进行隧道工程电设备的维护管理,维修队伍需要提高自身素质,重视队伍的建设,要求维修人员对施工现场和设计图纸都有详细了解,工程验收做到严格把关,不断提升专业素质并具备高度的责任心和进取精神,在实践中积累经验总结教训。
3结语
总而言之,对隧道工程机电设备实施智能监控及维护管理是必要的且重要的,不仅具有极大的经济价值还包括重要的社会效益。相关部门应该把隧道工程机电设备的智能监控及维护管理工作放到突出位置,在深入研究隧道工程机电设备的维护管理工作中的常见问题的基础上,针对如何更好地进行隧道工程电设备的维护管理工作进行探讨。
参考文献
[1]林华彬.高速公路电力监控智能化管理技术探讨[J].公路交通科技:应用技术版,20xx,22(1):23~24.
[2]张文.隧道施工监控量测数据分析处理和信息管理系统研究与应用[D].兰州交通大学,20xx,44(7):102~104.
[3]刘洋,陈帅.高速公路隧道集成化智能化监控技术与设计分析[J].大科技,20xx,9(5):92.
[4]范璐.智能信息化监控系统在隧道工程中的运用[J].工程技术:文摘版,20xx,4(11):00096.
[5]周进.公路隧道前馈式通风系统及隧道机电智能监控技术研究新进展[J].移动信息,20xx(11):00042~00044.
[6]孙钦凯.监控系统在高速公路隧道工程中的应用[J].电子技术与软件工程,20xx,17(4):171.
市政隧道论文范文高中 第29篇
沉埋隧道的特征一座沉埋隧道具有两项基本特征:(1)它是某一地下结构场地的一部分,要在繁忙的交通条件下保证施工,而并不意味这个地区是被充分地利用了的。因此,施工空间是很宝贵的。
(2)它基本上是一预制结构。
最终将安装在河流或运河底部位置的隧道管段是在其它地方以非常接近工厂条件的方式筑造的,这种条件在现场和工地是不大可能达到的。施工规划上的优点和将管段制造与工地准备分开进行在后勤上的优点是显而易见的,还有极易于实现有效的质量控制的优点。
隧道工点在环境上的影响同样也大大少于隧道完全都在现场施工的情况;如像空间的需求和施工运输,这两个问题就大大的缓和。
当然,这些优点的先决条件是有现成的可用于管段制造的适宜工地。它必须满足一系列有关环境影响的条件。在如荷兰这类人口密集的国家里,要找到合适的工地很不容易,而且很显然,一旦选定一可用位置,可多次使用就相当引人。因此,隧道施工的总体规划是一个供讨论的普通主题。
两端的地下结构一座新隧道连结到原来既有的地下结构中去,往往实际上是取代一既有的跨越水域的设施,如轮渡或桥梁。它也可为一既有隧道或桥梁的补充设施。无论决定建造一新隧道的理由如何,它的位置将在很大程度上受到既有地下结构布置的制约,而且其施工设计也要满足现有交通运输只受最小程度干扰的要求。这就意味着设计人员在隧道位置方面很少有选择的机会,因而不得不根据这一既定位置的条件和要求来修改隧道设计。
这一情形主要影响连接隧道本身的引道部分。然而,因为引道由穿过含水地层的分段组成,就有可能要求用新的措施以控制引道建造基坑排水影响的范围。
引道沉埋隧道几乎总是位于沉积地带,在那里,隧道引道降到地下水位以下。在其完成时,它们是不透水的结构,周围的地下水不能渗入,存在的仅是单纯结构性质的环境影响。
然而在施工期间,环境问题则起着重要的作用。为了建造起结构物,必须开挖一施工基坑直至地下水位以下若干米的深处,传统施工方法要求在施工期中持续不断把水排干。除非采取进一步的措施,否则排水势必降低周围地区的水位,而且会导致一系列不希望的后果。沉陷将发生,周围楼房和建筑物的基础将受到影响,而且甚至深桩基础也将受到沉陷土体经磨擦传递至桩上的额外向下荷载。由于沉陷而堤坝高程下沉,而且农业地区的排水水位将会受到影响。
还有可能造成一种性质完全不同的环境问题:施工区域内的泥土可能被污染。在这种情况下,施工基坑的开挖就要求格外注意,而且如有可能,就要采用诸如将泥土与水混合后经管道水力输送的特别方法。还必须有一个经批准能容纳被污染泥土的地方。
必须采取若干措施以防止由于抽、排水而造成被污染泥土迅速分布到大面积地面上。
在技术上,总是可能消除这些各种各样的影响。然而,由于做起来极为复杂而且会花费大量资金和时间,因此,目前倾向于寻找尽最大可能在水下建造引道和隧道进口的方法。最理想的是,排空施工基坑中的水应该是一排干整个引道又完全不影响周围地下水位的单项作业。
明显的结论就是尽可能将施工基坑设计成最终产品的一部分。
引道边墙可设计成像有不透水芯墙的堤坝,其形式有泥浆墙、塑料板围幕或是常见的钢钣桩墙。对最后一种形式(钢钣桩墙)(通过使用重型断面板桩和土锚)增加其挡土的功能,就可节省有价值的空间,而且可容易地达到在水下与不透水底板的连接。
底板可以用水下混凝土建成。这种方法已发展到能控制其高程和表面平整,以致达到在引道完全排干以后,只需要较少的修整工作。
另一种方法是采用不透水的塑料板材,加镇重安放于水下以盖住基坑底部和边坡。在荷兰,这种方法不仅用于隧道的引道,而且用于公络的凹槽段。
使用大面积的塑料板材,以泥土作镇重安放到水下,用在一主要公路交叉口起到了长期的良好效果,它表明此技术已经推广使用。不久,荷兰的隧道引道可能会向人们展示有茂盛的绿色边坡,从而取代了灰色的混凝土竖墙。
引道也可在别处预制并以浮运构件的形式安装。此种方法只需用疏浚船开挖沟槽而完全不必排水。不过目前还没有能充分处理浮力作用和基础问题的适宜设计。
[NextPage]
管段制造上述对地下水与引道开挖之间的关系的讨论大部分都可以同样的方式应用于制造管段临时场地的开挖。昂贵的解决办法给工程带来不合理的负担。而且,这个制造管段的场地必须多次被附近的开阔水域淹没并打开以使预制成的隧道管段运至船坞处以便为另一些管段让出地方。很少会有足够大的地方可供一次制造所有的管段。
总之,由于选择制造管段船坞的位置不像选择隧道引道的位置那样要严格地用功能要求来决定,故选择制造管段船坞的位置具有可以灵活的优点。因此,制造船坞也就可以允许使用传统的排水法,如果由于上面列出的理由认为不允许使用传统的排水法时,而船坞又不得不与周围地下水分隔开时,这种地方使用不透水塑料板法由于其费用低就具有明显的优点。
另一种不影响周围地下水位的排水方法是_抽水回灌法_此法乃将渗入基坑的水用泵排出,又用泵将这些水通过过滤井管回灌到水的来源区。只要渗透速度不是太大而且可保持大致是个常数,这个排、灌时闭路循环就可以保持。这个新的措施,现在正用在荷兰的.一个扩大的引道施工坑,由于这个基坑又要作为制造管段的船坞故加以扩大。
基槽的建造沉埋隧道的构槽是用疏浚法开挖的。在本文中,我们只强调用疏浚法开挖基槽的要求能达到极高的精确度,而且这个要求将决定最适合这一工作设备的类型。鉴于严格的定位容差,最好采用锚定疏浚船或在定位桩上的疏浚设备。不过,由于它们不能自由移动,就可能成为船只航运的障碍。
假如在浚挖区域有水流或浪潮的影响,浚挖的基槽就会成为水流携带或沿河底推移的沉积物的积存处。如果基槽开挖后长期不放置管段,就会很快形成淤积。在上述情况下,基槽开挖和隧道管段安装两工序的相隔时间必须越短越好,因而对这两道工序的安排都需格外准确,可以采用一种专门的设备于安装管段之前清理基槽。在荷兰,这种操作目前已发展到用在东斯格尔迪特(EasternScheldt)防风暴海浪堤坝的墩柱安装中达到很高精度。
疏浚搅起了河底沉积物,造成在一定时间一定区域的河水浑浊。最终这些成为悬浮的细颗粒物质会散开并重新逐渐沉淀下来。尽管这一过程对环境的影响有限,而且无害,但在一定范围内还是日益受到强烈的抨击。
如果要浚挖的泥土是已被污染的,事情就更为复杂化,因为在这种条件下,浚挖作业就会使污染扩散。现在浚挖技术已发展到通过使用一种专门的汲泥头来消除这一影响。采用从浮船上下悬帘幕将浚挖区域与周围完全隔开的方法也可减少污染扩散。
在这一方面的进一步发展目前大家都注意到,在荷兰大部分水道底部都含有被污染的沉积物已很明显,因而浚挖这些泥土必然要承担一些特别的环境要求。
当前,这些要求尚未统一形成,而是针对每一具体工程提出不同的要求。希望这种拖延关键技术发展的混乱局面能迅速得以解决。
根据污染的类型和程度,可将被污染泥土分为1~4类。对于浚挖泥土(包括浚挖过程中的工艺用水)的弃置都按分类受到严格的限制;尤其是3和4类泥土都必须与外界隔绝,而且在可能的情况下加以净化。
在鹿特丹地区,已建成了一座储放这些固体废物以及其它有害物质的中心堆集场。此外,第4类浚挖弃土被放在临时的较小的堆集点,待其被净化后再转放至别的隔离存放处。在没有这类设施的地方,就必须按浚挖工程建立这种堆放点。这一措施很明显需要做大量的工作。
管段的运输和安装疏浚工作和对航运的阻碍都是管段运输和安装带来的环境问题。要打开管段制船坞和加深船坞与安装点之间航道的浅水域就需要浚挖作业。前面有关浚挖的一些论述也适用这一情况。
安装工序中有一特殊的方面有可能涉及隧道基槽的最后清理。为了使清理和安装两工序间隔时间缩至最短,在管段安放到其最终位置底部回填砂之前已成功地采用了射水法清理隧道管段基底。用强力射水把要清除的最后一层沉积物冲成悬浮物,随后被水流带走。
在管段离开制造船坞,锚泊在临时码头和离开临时码头,浮运至安装点以及安装期间都有可能阻碍航运。只有最后一道工序才会造成航运在短期内临时完全中断或部分中断。
在这个方面,一座沉埋隧道穿过一条河流与穿过一条运河存在着差别。在后一种情况下,由于没有水流影响,就使得在沉放和安装用可更好地控制管段。这种控制上的有利,就允许沉埋管段隧道采用更长管段单元,但这必须有足够大的制造船坞。
所以在荷兰,以往绝大多数沉埋隧道的管段单元长度都在100~150m之间变化,在跨越阿姆斯特丹和海域间北海运河的赫姆隧道(Hemtunnel)工程中还用了长达268m的管段单元。使用较长的管段单元减少了安装作业的次数,从而也就减缓了对航运的阻碍。
对于沉埋管段隧道工程来说,妨碍航运似乎很适合定为一环境问题,但并不是一个重大问题。
回填这道工序包括用砂回填管段基底部,回填塞槽,以及必要时于管段顶部建造一冲刷防护层。
回填材料必须是未被污染的。作业船在隧道上面施工时将干扰航运。不过,通过用安装在隧道管段内的设备进行部分作业,就能减少这类麻烦,譬如经穿过隧道底部的孔口泵送砂、水混合物来回填等。这一系统已在荷兰成功地应用过。
运营和维修涉及隧道运营的主要环境问题是通风。
由于清洁隧道边墙和维修路面要阻碍车辆运行,它们必须在适宜的时间内快速进行。平整光滑的壁面以及良好的表涂层有助于清洁作业,从而也减少了限制车辆通过隧道的时间。
路面的建造必须做到能尽可能减少日后的维修。
市政隧道论文范文高中 第30篇
在加强公路隧道工程建设的'质量管理当中,加强对于材料的管理是所有工程施工的基础。也是质量确保的关键。因此,材料检测材料检测主要针对公路隧道可能用到的各种材料,在借鉴现有相关规范、规程的基础上,制定检测内容、检测方法和评价指标,并给出相关质量检测表格。这样,保证施工材料的科学性安全性,才能够保证公路隧道工程建设质量有充分的保证。
2.2保证公路隧道建设施工程序的科学
在对于公路工程建设过程当中,要想确保质量管理工作能够落在实处,就需要在施工阶段,进行一些列程序的监管。施工检测依据公路隧道的施工工序,将整个施工过程划分为开挖质量检测、初期支护质量检测、防水系统施工质量检测、二次衬砌质量检测、仰拱施工质量检测、明洞施工质量检测。这样,才能够保证施工过程当中,公路隧道工程建设的质量管理工作也能够发挥自身的价值职能。
2.3提升道路隧道工程竣工验收工作的开展
对于公路隧道工程建设质量管理而言,竣工工程的检验是保证其质量的重要的环节,因为,竣工检测公路隧道竣工验收是工程竣工交付使用前的一道重要程序,针对目前中国公路隧道竣工验收的现状及存在的问题,本文对公路隧道工程竣工后的洞口工程、洞身衬砌、隧工验收工作的分项、分部工程进行了详细划分,是切实保证公路隧道工程建设质量的最后一道防线。尤其对机电工程相关项目的检测划分更细。这样,通过全程的参与,才能够保证在公路隧道工程建设当中,质量能够得到更加有效的保障,每一部分工程又划分若干个分项工程,同时,对相关施工资料的检查验收工作也被单独列为一项。从而切实保障公路隧道工程建设质量管理工作的价值性。
公路隧道工程建设质量控制对于工程建设而言相当重要。因此,加强公路隧道工程建设的质量控制对于有效的提升施工工艺具有重要的促进作用。在公路隧道工程建设质量管理当中,加强立法,提升相关管理人的质量意识,加强监管力度,完善质量管理体系和监管体系,对于切实有效的提升公路隧道工程质量管理具有诸多的积极意义。伴随着我国工程隧道工程建设的不断发展,相信在不断的探索和完善当中,公路隧道工程建设质量管理能力也会得到相应的提升。
参考文献
[1]刘立国,董小昆.公路隧道防渗漏质量控制[J].长安大学学报(自然科学版).,(05).
[2]刘庭金,朱合华,夏才初,李志厚,李国锋.云南省连拱隧道衬砌开裂和渗漏水调查结果及分析[J].中国公路学报.,(02).
[3]王贺武,刘浩学,王生昌.公路隧道环境对车用柴油机排放影响的研究[J].中国公路学报.,(04).
[4]邹正明.隧道施工质量检测与监控量测综合管理[J].公路.,(10).
[5]姜云.控制公路隧道质量的几个关键问题[J].公路.,(1).
市政隧道论文范文高中 第31篇
随着我国高等级公路的快速发展,隧道工程在整个公路建设中所占的比例越来越大,并日趋于长大化,提高隧道工程的施工质量管理是一个日益迫切的需求,而公路隧道工程施工质量管理是一项系统性工程。
1公路隧道质量问题
当下我国的公路隧道建设在改革开放之后取得了很大程度上的进步,但是由于我国的公路隧道工程建设起步较晚,在快速发展过程当中,各方面还存在着诸多的问题。尤其是管理方面,由于经验不足,导致在公路隧道工程质量控制当中,还有诸多的不足。
市政隧道论文范文高中 第32篇
关键词:隧道塌方;软弱围岩;处理
1工程概况
某隧道为分离式隧道,设计净空断面为×,曲墙复合式衬砌结构。按新奥法施工,进出口段采用大管棚、超前小导管、型钢支撑或超前锚杆、钢格栅拱架成洞。
隧道特点:①隧道地处丘陵地貌,山坡坡度约为10°~30°,
植被较发育。中部山脊走向接近南北向,未见崩塌、滑坡等地质灾害。②隧道岩层走向与隧道轴线大角度相交,间有断裂及向斜构造分布,岩层层理、裂隙发育较全,易产生坍塌和掉块。③隧道进出口段处见风化凹槽,地层岩性为砂土状及碎块状强风化熔结凝灰岩层,厚度大、地层渗透系数大,属强过水通道,水量丰富。洞室埋深浅,大部分处于埋深小于40m的浅埋地段。侧壁易失稳,拱部无支护时易产生坍塌。④隧道地下水主要风化层孔隙裂隙水和基岩裂隙水,受大气降水及地下水侧向补给,水量贫乏,但隧道中部的构造断裂带位于小山谷旁,富水性较好。勘察期间对钻孔进行稳定水位恢复观测,未见涌水等地下水发育迹象,但隧道大部分穿行于粉砂岩、泥岩区,层理裂隙发育,且本隧道发育有多条断裂带,为潜在的良好透水带。
2塌方产生原因
地质因素
隧道工程属地下工程,地质情况千变万化,施工过程中受各种不可预见的地质现象及地质构造的影响巨大。公路隧道工程受多变的地质条件影响,如遇到地下水、岩溶、断层破碎带、高地应力、岩爆、瓦斯、偏压浅埋、膨胀土等条件,使施工难度大,安全性差;而且公路隧道开挖跨度大,单洞三车道隧道开挖跨度达16m,形状扁平,且防水要求高,加之受勘查水平及其他很多相关因素的制约,这些无疑加大了公路隧道的施工难度和塌方事故产生。
此隧道中地层岩性为砂土状及碎块状强风化熔结凝灰岩层,厚度大、地层渗透系数大,属强过水通道,水量丰富。水渗入围岩使软化系数大的岩石强度降低,结构面的抗剪强度减小,导致塌方。洞室埋深浅,大部分处于埋深小于40m的浅埋地段。塌方处地表人工采土开挖范围较大,未采取防护措施。
设计因素
公路隧道工程设计方法当前主要有工程类比法、理论计算法及现场监控法等,这些方法又以工程类比法运用得最为广泛。在设计过程中若对围岩判断不准或情况不明,从而设计的支护类型与实际要求不相适应,也是导致施工中产生松驰坍塌等异常现象的原因,而且设计中的地质勘查周密详尽与否也是造成施工塌方事故产生的诱发甚至主导因素。
施工因素
施工中的不规范施工也是导致塌方的重要因素之一。目前,中国公路隧道施工队伍的技术、管理及施工水平参差不齐,加之一些建设环节的操作不规范,有的施工企业及人员对新奥法原理缺乏深入学习、认识、研究和应用,导致不规范施工现象较为普遍。
认识因素
不可否认的是,“不塌方、不赚钱”的观念目前还在一定范围内存在。有些施工单位及施工人员甚至期盼着塌方,从而增加工程量或者设计变更以带来更大的施工利润。另一方面,“地质工作是设计人员的任务,而不是施工人员的事”这一传统观念致使减弱甚至忽略了施工过程中的地质勘测及预报工作,从而也加大了施工塌方事故产生的可能性。
3隧道塌方处理方法
塌方事故发生后,及时对塌方体进行处理,对塌方体表面喷一层20cm厚的C25早强混凝土并挂网将塌方体封闭,然后进行超前小导管注浆预支护加固、稳定围岩。针对现场塌方的实际情况,对受塌方影响的初期衬砌裂缝地段进行加固,并及时施作二次衬砌,对塌方体进行加固处理,对地表进行封闭。
开裂、侵限段落的加固处理
塌方事故直接影响初期支护拱体长达7m~19m,拱顶初期支护下沉变形较大,出现多条较大裂缝。为了防止塌方范围继续扩大,以及防止前端的初期衬砌支护下沉变形加大,对初期衬砌裂缝地段采取了如下加固措施:
(1)对桩号初期衬砌裂缝地段的初期支护,拱部增设径向
Φ50mm×5mm小导管,呈梅花型布置,间距为100cm×100cm。施工后及时注浆以加固围岩,防止洞室周围围岩塑性区进一步扩展。通过监控量测结果可以看出小导管注浆后围岩变形减少,达到了预期的效果。
(2)先对每榀型钢拱脚底部每侧各施打向下为45°的两根
长注浆小导管锁脚,然后用工字钢做临时支撑,工字钢(或槽钢)做底梁。待钢支撑施工完毕后,设水平横向支撑形成环,工字钢用Φ25钢筋纵向连接,环向间距为100cm。工字钢按70cm间距安装,加设楔形砼垫于喷射混凝土与型钢之间塞缝。
(3)未塌方段由于受到塌方体的影响,紧邻塌方体10m范围内的周壁围岩发生较大变形,严重侵占了二次衬砌规定的5cm~10cm,最薄处只有40cm。为了确保二衬尺寸,对侵限地段已经施工完毕的工字钢支撑进行了抽换。抽换采取间隔抽换,型钢更换后,对侵入二衬范围的喷射砼进行凿除,满足设计初支厚度后进行重新补喷,然后再进行二衬的正常施工。
塌方整治总体方案
塌方体围岩结构属V级围岩,塌方体厚度为8m~17m,高度为36m,塌方空腔较大。在处理、加固好未塌方段后,在做好隧道地表排水和保证安全的前提条件下,按照下列方案和工艺过程进行塌方体处理。
加强对塌方体的监控量测
对洞周塌方范围进行定时、定位的观测,随时掌握塌方体动向,并将现场数据进行回归分析,以便对围岩稳定进行分析,修正和完善抢险方案。
洞内塌方影响段处理
(1)对塌方体表面喷一层20cm厚的C25早强混凝土并挂网将塌方体封闭,保持塌方体稳定。应在塌方体下部打入Φ50mm×5mm钢花管,以利塌方体内排水工作。
(2)在塌方影响段内采用Φ89mm×6mm超前注浆钢花管,环向、纵向间距分别为50cm、100cm,扇形布置,外插角为15°、30°、45°,长度为18m。
(3)待塌方体注浆固结强度及超前支护强度达到设计要求后,方可对塌方段进行开挖。严格采用双侧壁导坑,必要时加上下台阶法进行掘进,逐段清理塌方体并开挖到设计轮廓线后,随即喷射5cm混凝土,架设22a工字钢支撑(间距为50cm)。并用注浆小导管锁脚(每处施做两根长,Φ50mm×5mm小导管),必要时可施工临时仰拱(现浇20cm厚C20砼),钢支撑架设后应立即复喷到位。
(4)初期支护采用Φ50mm×5mm小导管(长为5m,外插角为60°),小导管纵、环向间距皆为1m和挂网喷C25砼(厚30cm),22a工字钢支撑(间距为50cm)。
(5)二次衬砌比原设计有较大加强,厚度按60cm,混凝土标号采用C30钢筋混凝土,钢筋直径采用Φ25mm,间距为10cm。
(6)注浆:为了保证水泥浆液在土体中一定范围内扩散,注浆材料采用C30细粒水泥浆,注浆压力为。施工时注浆量根据现场试验进行确定。注浆时先拱墙、后拱部,并采用隔孔注浆方式。注浆结束标准,注浆压力逐步升高,达到设计终压并继续注浆15min以上,注浆量一般为20L/min~30L/min。
(7)初期支护完成后,仰拱紧跟施作,尽快形成初支闭合环,并要求二衬衬砌紧跟,使塌方体变形小并保证塌方体稳定。侧壁临时支护拆卸前必须对注浆过的围岩钻孔取芯,检测注浆效果,若注浆效果达不到要求,须重新补注加固。
洞顶地表处理
(1)修筑洞顶塌陷坑周边的截排水沟,以阻止地表水继续向塌方区汇集。
(2)在山体周边表面裂缝填灌C20水泥浆(上边大裂缝可用黏土填筑,表面再用水泥砂浆隔水),回填地表凹陷处并进行夯实,在其上喷一层厚20cm的C20早强混凝土将塌方体封闭,保持地表塌方体的稳定。
4塌方处理的施工要求
(1)监控量测要求,先期监控频率每班监控1次,待变形基本控制住后可改为每天1次,及时向设计代表和总监办汇报监控结果。
(2)遇到突发事件,立即采取应急处理措施。在施工过程中,应确保施工安全,采用3班工作制,安全员应随时注意观察围岩变化。若有突变,所有人员必须立即撤离。同时要加快处理速度,以尽量减少裂缝发展。
5结论
在处理此隧道的塌方中,我们遇到了困难,进行了反思,总结得到以下几点经验:
(1)加强在隧道施工实践中对新奥法原理的理解和实施,“设计、施工、量测、设计”是新奥法的根本所在,属动态信息管理。加强监控量测工作,按规定进行量测、科学分析、信息及时反馈,指导工程施工。尤其在Ⅴ、Ⅳ级的围岩施工中,该项工作显得更为重要。
(2)在Ⅴ、Ⅳ级软弱围岩含水地段开挖施工中,应严格遵循“短进尺,弱爆破,紧支护,勤量测”的指导方针。实践证明,及时支护并初喷4cm厚砼封闭的施工工序至关重要,可避免隧道开挖后围岩暴露过久产生风化作用而降低其强度和稳定性,使支护和围岩作为一个统一的整体共同工作,降低塌方事故发生的可能性。
(3)公路软弱围岩段隧道施工必须早封闭成环及紧跟二次衬砌,使其与初期衬砌共同参与受力。避免初期支护被压垮,导致隧道塌方。
市政隧道论文范文高中 第33篇
摘要:公路隧道工程的逐渐发展对隧道工程施工技术的要求越来越高,尤其是特长隧道,这些隧道的工程建设都有着覆盖层厚、地质条件复杂和施工条件恶劣等技术难点。除此以外,工程建设还要保护当地的生态环境,这就对公路隧道工程的施工提出了更多的要求。
关键词:公路隧道;施工技术;初期支护;二次衬砌
经济的发展推动了我国公路的现代化建设,我国的公路隧道建设也在日益增多,如今,我国的长隧道都是参照已有的隧道再实施工程建设的。可以看出,我国在公路隧道工程技术方面仍然存在不足,并且为其开展的科研项目也比较少。公路隧道建设是一项非常复杂的地下线性工程,施工过程中会出现很多的不确定因素,由于我国缺乏对公路隧道系统各环节的研究,尤其是在特长的公路隧道方面有着整体性、系统性不强等问题,这些都成为了我国公路隧道建设过程中的发展局限和瓶颈,给公路隧道建设带来了很多的安全隐患,亟需有关研究部门加以解决。
1公路隧道施工前的准备
公路隧道施工前的准备工作主要有:①由于每个地区的具体环境都不相同,所以公路隧道的建设也都需要结合当地的实际情况加以更改,所以在隧道工程开工以前,首先要对施工环境进行考察,做好现场调查研究工作。②核对设计文件和编制施工组织设计,预测隧道施工可能对地下已设结构物的影响。③积极了解施工现场的天气、施工材料和运输情况,对施工现场可能会出现的用电问题、水量问题(雨水冲刷)以及材料供应等作好准备。④对交通运输条件和施工运输便道进行方案比选,合理安排施工工具,现场核对隧道平面、纵面设计等。⑤对施工地周围的生活供应、医疗条件以及电力通信、劳动力等做好勘察,并测试周围的水源、水质,拟定供水方案。⑥按照公路隧道施工方案或技术的不同,工程实施前需要预先准备好施工所需要的一系列材料,比如砂石、水泥和钢筋等,还有一些特殊的防水材料或钢材。这些原材料在投入工程使用前都必须经过严格的质量检查和筛选,坚决杜绝使用劣质材料,而符合国家规定的材料也要进行合理堆放,避免施工人员由于材料乱堆放而导致其他事故的发生。
上一篇:幼儿行为观察美篇范文(必备6篇)
下一篇:员工亲情承诺书范文(精选6篇)