欢迎访问AA范文大全网!

数学建模案例分析范文大全(实用21篇)

知识的灯塔 分享 时间: 加入收藏 我要投稿 点赞

本文共计23662个文字,预计阅读时间需要95分钟。

数学建模案例分析范文大全 第1篇

摘要:

层次分析法是美国学者于20世纪70年代提出了以定性与定量相结合,系统化、层次化分析解决问题的方法,简称AHP。传统的层次分析法算法具有构造判断矩阵不容易、计算繁多重复且易出错、一致性调整比较麻烦等缺点。本文利用微软的Excel电子表格的强大的函数运算功能,设置了简明易懂的计算表格和步骤,使得判断矩阵的构造、层次单排序和层次总排序的计算以及一致性检验和检验之后对判断矩阵的调整变得十分简单。

关键词:

Excel 模型 层次分析法

一、层次分析法的基本原理

层次分析法是解决定性事件定量化或定性与定量相结合问题的有力决策分析方法。它主要是将人们的思维过程层次化、,逐层比较其间的相关因素并逐层检验比较结果是否合理,从而为分析决策提供较具说服力的定量依据。层次分析法不仅可用于确定评价指标体系的权重,而且还可用于直接评价决策问题,对研究对象排序,实施评价排序的评价内容。

用AHP分析问题大体要经过以下七个步骤:

(1)建立层次结构模型;

首先要将所包含的因素分组,每一组作为一个层次,按照最高层、若干有关的.中间层和最低层的形式排列起来。对于决策问题,通常可以将其划分成层次结构模型,如图1所示。

其中,最高层:表示解决问题的目的,即应用AHP所要达到的目标。

中间层:它表示采用某种措施和政策来实现预定目标所涉及的中间环节,一般又分为策略层、约束层、准则层等。

最低层:表示解决问题的措施或政策(即方案)。

(2)构造判断矩阵;

设有某层有n个元素,X={Xx1,x2,x3……xn}要比较它们对上一层某一准则(或目标)的影响程度,确定在该层中相对于某一准则所占的比重。(即把n个因素对上层某一目标的影响程度排序。上述比较是两两因素之间进行的比较,比较时取1~9尺度。

用 表示第i个因素相对于第j个因素的比较结果,则

A则称为成对比较矩阵

比较尺度:(1~9尺度的含义)

如果数值为2,4,6,8表示第i个因素相对于第j个因素的影响介于上述两个相邻等级之间。

倒数:若j因素和i因素比较,得到的判断值为

(3)用和积法或方根法等求得特征向量 W(向量 W 的分量 Wi 即为层次单排序)并计算最大特征根λmax;

(4)计算一致性指标 CI、RI、CR 并判断是否具有满意的一致性。其中RI是

平均随机一致性指标 RI 的数值:

矩阵阶数34567891011

CR=CI/RI,一般地当一致性比率CR<时,认为A的不一致程度在容许范围之内,可用其归一化特征向量作为权向量,否则要重新构造成对比较矩阵,对A加以调整。

(5)层次总排序,如表1所示。

(6)层次总排序一致性检验,如前所述。

(7)根据需要进行调整 对于层次单排序结果和层次总排序结果,只要符合满意一致性即随机一致性比例 CR≤ 就可以结束计算并认同排序结果,否则就要返回调整不符合一致性的判断矩阵。

二、层次分析法 Excel 模型设计过程

案例:某人欲到苏州、杭州、桂林三地旅游,选择要考虑的因素包括四个方面:景色、费用、居住和饮食,用层次分析法选一个适合自己情况的旅游点。

⒈根据题意可以建立层次结构模型如图1所示。

⒉Excel实现过程

⑴将准则层的各因素对目标层的影响两两比较结果输入Excel表格中,进行单排序及一致性检验如图2所示。 其中:F4=PRODUCT(B4:E4),表示B4、C4、D4、E4各单元格连乘,复制公式至F7单元格。 G4=POWER(F4,1/4),表示将F4单元格的值开4次方,复制公式至G7单元格 G8=SUM(G4:G7),表示求和 H4=G4/$G$8,复制公式至H7单元格 I4= B4*H$4+C4*H$5+D4*H$6+E4*H$7,复制公式至I7单元格 J4= I4/H4 λmax= AVERAGE(J4:J7)。 CI=(J8-4)/(4-1),CR=CI/;,即通过一致性检验。

⑵按同样的方法分别计算出方案层对景色、费用、居住、饮食的判断矩阵及一致性检验,如图3所示。

⑶层次总排序,由于苏州数值最高,故选择的旅游地为苏州,如图4所示。 其中:C44=K14,G44=$C$43*C44,H48={SUM($C$43:$F$43*C48:F48)},注意:这是一个数组函数需按ctrl+shift+enter三键确定。

三、基于Excel的层次分析法模型设计的优势

(1)层次分析法 Excel 算法以广泛使用的办公软件 Excel 作为运算平台,无需掌握深奥的计算机专业知识和术语,有很好的推广应用基础。

(2)层次分析法 Excel算法的所有计算结果和数据均保留最高位数的精确度,可以不在任何环节进行四舍五入,当然也可以根据需要设置小数位,从而最大限度地减少了误差。

(3)层次分析法 Excel 算法的计算步骤设计成环环相扣、步步跟踪,步骤设计完毕后,可以按需要填充或变更,其余数据和结果均可以在填充或变更判断矩阵之后立即得出,使得整个运算过程简捷、轻松。另外,相似的矩阵区和计算区可以通过复制完成,只需改动少量单元格。

(4)层次分析法 Excel 算法将一致性检验也同时计算出来,决策者和判断者可以即时知道自己的判断是否具有满意的一致性并可以随时和简单地进行调整直到符合满意一致性。

(5)如果一致性指标不能令人满意,用本方法可以比较容易地实现对判断矩阵的调整,可以实现对判断的“微调” ,使得逼近最大程度的“满意一致性”甚至“完全一致性”而又不必进行繁重运算成为可能。

数学建模案例分析范文大全 第2篇

数学建模是将实际生活与数学相结合的有效途径和方法。学生在创建数学模型的过程中,其思维方式也得到了锻炼。小学阶段的教学,其数学模型的构建应当以儿童文化观为基础,其目的主要是培养儿童的建模思想,这也是提升小学生学习数学积极性,提升课堂文化气息的有效方法和途径。

创新人才的培养是新的时代对高等教育提出的新要求。培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力。

因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1]。

在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养。尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力。

而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践。

近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效。数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2]。

所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程。数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程。

因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3—7]。

因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点。现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中总结的几点看法。

数学建模案例分析范文大全 第3篇

1.定位于儿童的生活经验

儿童是小学数学的主要教学对象,因此数学问题中研究的内容复杂程度要适中,要与儿童的生活和发展情况相结合。xxx数学建模xxx要以儿童为出发点,在数学课堂上要多引用发生在日常生活中的案例,使儿童在数学教材上遇到的问题与现实生活中的问题相结合,从而激发学生学习的积极性,使学生通过自身的经验,积极地感受数学模型的作用。同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。

2.定位于儿童的思维方式

小学生的特点是年龄小,思维简单。因此小学的数学建模必须与小学生的实际情况相结合,循序渐进的进行,使其与小学生的认知能力相适应。

实际情况表明,教师要想使学生能够积极主动的思考问题,提高他们将数学思维运用到实际生活中的能力,就必须把握好儿童在数学建模过程中的情感、认知和思维起点。我们以《常见的数量关系》中关于速度、时间和路程的教学为例,有的老师启发学生与二年级所学的乘除法相结合,使乘除法这一知识点与时间、速度和路程建立了关联,从而使xxx数量关系xxx与数学原型xxx一乘两除xxx结合起来,并且使学生利用抽象与类比的思维方法完成了xxx数量关系xxx的xxx意义建模xxx,从而创建了完善的认知体系。

数学建模案例分析范文大全 第4篇

在进行数学建模的时候,一定要保证实例简明易懂,结合日常生活的实际情况,创设相应的教学情境,激发学生学习的兴趣。从易懂的实际问题出发,由浅到深的展开教学内容,通过建模思想的渗透,让学生进行认真的思考,进而掌握一些学习的方法与手段。在实际教学中,不要强求统一,针对不同的专业、院校,展开因材施教,加强与教学研究的结合,不断发现问题,并且予以改进,达到预期的教学效果。教师需要编写一些可以融入的教学单元,为相关课程教学提供有效的数学建模素材,促进教师与学生的学习与研究,培养个人的教学风格。除此之外,在实际教学中,可以将教学重点放在大一的第一学期,加强教师引导与教育,根据实际问题,重视微积分概念、思想、方法的学习,结合数学建模思想,让学生充分认识到高等数学的重要性,进而展开相关学习。

数学建模案例分析范文大全 第5篇

有助于调动学生学习的兴趣

在高等数学教学中,如果缺乏正确的认识与定位,就会致使学生学习动机不明确,学习积极性较低,在实际解题中,无法有效拓展思路,缺乏自主解决问题的能力。在高等数学教学中应用数学建模思想,可以让学生对高等数学进行重新的认识与定位,准确掌握有关概念、定理知识,并且将其应用在实际工作当中。与纯理论教学相较而言,在高等数学教学中应用数学建模思想,可以更好的调动学生学习的兴趣与积极性,让学生可以自主学习相关知识,进而提高课堂教学质量。有助于提高学生的数学素质随着科学技术水平的不断提高,社会对人才的要求越来越高,大学生不仅要了解专业知识,还要具有分析、解决问题的能力,同时还要具备一定的组织管理能力、实际操作能力等,这样才可以更好的满足工作需求。高等数学具有严密的逻辑性、较强的抽象性,符合时代发展的需求,满足了社会发展对新型人才的需求。在高等数学教学中应用数学建模思想,不仅可以提高学生的数学素质,还可以增强学生的综合素质。同时,在高等数学教学中,应用数学建模思想,可以加强学生理论和实践的结合,通过数学模型的构建,可以培养学生的数学运用能力与实践能力,进而提高学生的综合素质。

有助于培养学生的创新能力

和传统高等数学纯理论教学不同,数学建模思想在高等数学教学中应用的时候,更加重视实际问题的解决,通过数学模型的构建,解决实际问题,有助于培养学生的创新精神,在实际运用中提高学生的创新能力。数学建模活动需要学生参与实际问题的分析与解决,完成数学模型的求解。在实际教学中,学生具有充足的思考空间,为提高学生的创新意识奠定了坚实的基础,同时,充分发挥了学生的自身优势,挖掘了学生学习的潜能,有效解决了实际问题。在很大程度上提高了学生数学运用能力,培养了学生的创新意识,增强了学生的创新能力。

数学建模案例分析范文大全 第6篇

由于参加数学建模竞赛可以激起学生学习数学的兴趣,提高学生运用数学和计算机技术解决问题的综合能力,激励学生积极参加课外科技活动,开拓学生的知识视野,培养学生的创新意识和团队合作意识,推动高等数学教学体系,教学内容和教学方法的改革。基于此,给出一些建议如下:

1.把数学建模的管理层次上升到学院,因为只有学院的大力支持,领导的高度重视才是提高高职学生数学建模能力的首要条件,而且只有学院的倡导和支持,各部门在宣传数学建模方面时才会更加尽职尽责,不会出现推诿的现象。

2.成立数学建模协会小组,并有学校资金的支持,这样可以把对数学建模有兴趣的同学集中在一起,让他们之间相互讨论。建模协会应该有协会会长及其他管理者,这样他们在运营平时的协会工作时才能各司其职,并有一定的组织性和纪律性。协会平时可以组织一些经典的数学建模的小案例以海报的形式展现在全校学生面前,或者是以有奖竞猜的方法提高学生的参与性,这样不仅可以达到宣传数学建模的效果,也可以更好的提高学生的理性思维能力。

3.平时开设数学建模选修课,假期集中培训备战国赛,由于我校的数学建模课一般开设在大一的下学期,而技能大赛的比赛时间通常是选修课开课之前,这就导致了学生参加技能大赛时根本不知道数学建模比赛比的是什么。而且选修课只有一个老师教,力度太小。应该是大一开学就开始开设相关的数学建模选修课,几个数学老师分工,每个数学老师讲授一块内容,这样学生了解的知识面会更广一些。另外,必须赛前集中培训,因为平时的选修课只是让学生了解,但并没有让他们系统的练习,所以赛前培训就是重点讲数学建模习题,并让学生以三人一个小组模拟训练。

数学建模案例分析范文大全 第7篇

不知不觉一个学期的工作走向了尾声,本学期我社团在院领导及老师的带领下开展各项活动,并取得了一些成绩,同时也发现了新的问题,现将本学期的工作进行总结如下:

一、制度建设

本学期社团工作一开始,我们就针对上学期工作中出现的问题对章程进行了进一步完善。而且为了让成员更加了解社团、进一步严明纪律以更好的提高社团的工作效率,通过理事会研究决定将章程书面化,并由部长组织部内成员学习。

二、机构建设

为了更好地参加9月份“全国数学建模大赛”,协会建立了学习群并开展了相应的培训。

三、基础工作

1、加强成员之间的交流;

2、做好数学建模及数学实验选修课的工作;

3、了解“数学建模大赛”的动态;

4、做好“数学建模大赛”的报名及培训工作。

四、举办活动

(一)数学建模选修及数学实验选修开展工作

数学建模及实验是我社团指导老师针对我学院及社团的需要开设的选修课程,有助于成员学习并了解更多的.建模知识。

(二)思维锻炼及团队意识培养活动古希腊雅典神庙上有句箴言:“认识你自己。”古罗马大哲西塞罗说:“每个人都对自己了解最少。”他们的提示适用于我们对右脑的认识和对自己的了解。那么我们又要如何的去锻炼我们的思维呢?一根线,一张纸,几根细竹,几笔色彩,就构成了理想的框架。理想期待同学们放飞,期待青年娇子傲视大地,向目的地奔驰。放风筝的户外活动让同学们放飞了梦想,并树立了为实现梦想而努力奋斗的信心。数独技巧讲座更是了大家缓解紧张的学习和生活带来的压力,感受到了数学的乐趣,展现了社团成员们的昂扬风貌。

(三)首届“大明眼镜”杯数独大赛

为响应我党建党90周年及我学院成立10周年,我社联合兄弟社团特举办首届数独大赛。通过此次比赛丰富我校大学生的课余生活,拓展大家的思维能力,增强同学们的逻辑思维能力和推理能力,让大家对数学的学习兴趣更加浓厚。本次比赛共有180余人参加,经过紧张激烈的角逐之后,最后信息学院的李凯跃同学以17秒的优势夺冠,获得二等奖的是理学系戈苑、李小丽同学;三等奖信息学院王健、理学系董全苗、王通同学;优秀奖信息学院赵鹏飞、庞浩淼、苗成森及管理学院柴晓玲、王蕊同学。

(四)“全国数学建模大赛”的报名及培训

6月份我社团在理学系的带领下面向全院展开了“全国数学建模大赛”的报名工作,并于7月8号到7月14开展为期一星期的第一期集训,使同学们自身有了一定的提高,为9月9日到12日的比赛打好基础。

五、反思

总体而言,通过本学期多次活动的举办,使我社团在各方面都有了一个很大的提高。首先理事会成员的组织能力与责任心上得到了进一步的提高,再就是为我社团培养出来一大批责任心强的创业人才,并且在工作任务的分配上也能使每一个会员都有事可干。总而言之,我们这一学期的进步是巨大的,但是还是存在几点瑕疵:

1、部分理事会成员的领导能力有待提高;

2、大型活动的组织能力上还有待提高;

3、社团内成员的凝集力还是不够;

4、社团的执行力还差的远;

5、各部门间的配合严重不足。

上面的四点也就是本学期我们暴漏出的问题,也是影响我社团进步的关键因素之所在。希望我们能在下一学期中得到改进,让我社团能够“百尺竿头更进一步”。

数学建模案例分析范文大全 第8篇

1.有利于培养学生综合解决问题的能力

2.有利于促进高职数学课程的改革

大多数学校的高职数学课还是采用教师在上面讲,学生在下面听的方法,殊不知对于高职生而言,他们不但听不懂,而且也不愿意听,这就促进教师要改进教学方法,最好的方法是在机房里上课,老师把重要的理论思想教给学生之后,具体的计算方法可以让学生利用软件在电脑上操作,这样既提高了学生的学习兴趣,也提高了学生运用软件的能力。

数学建模案例分析范文大全 第9篇

1.教师要具备数学建模思想意识

在对高等数学进行教学的过程中,培养学生运用数学建模思想,首先教师要具备足够的数学建模意识。教师在进行高等数学教学之前,首先,要对所讲数学内容的相关实例进行查找,有意识的实现高等数学内容和各个不同领域之间的联系;其次,教师要实现高等数学教学内容与教学要求的转变,及时的更新自身的教学观念和教学思想。例如,教师细心发现现实生活中的小事,然后运用这些小事建造相应的数学模型,这样不仅有利于营造活跃的课堂环境,而且还有利于激发学生的学习兴趣。

2.实现数学建模思想和高等数学教材的互相结合

3.理清高等数学名词的概念

高等数学中的数学概念是根据实际需要出现的,所以在数学的教学中,教师要引起从实际问题中提取数学概念的整个过程,对学生应用数学的兴趣进行培养。例如在高等数学

教材中,导数和定积分是其中的比较重要的概念,因此,教师在进行教学时,要引导学生理清这两个的概念。比如导数概念是由几何曲线中的切线斜率引导出来的,定积分的概念是由局部取近似值引出的,将常量转变为变量。

4.加强数学应用问题的培养

高等数学中,主要有以下几种应用问题:

(1)最值问题

在高等数学教材中,最值问题是导数应用中最重要的问题。教师在教学过程中通过对最值问题的解题步骤进行归纳,能够有效地将数学建模的基本思想进行反映。因此,在对这部分内容进行教学时,要增加例题,加大学生的练习,开拓学生的思维,让学生熟练掌握最值问题的解决办法。

(2)微分方程

在微分方程的教学中运用数学建模思想,能够有效地解决实际问题。微分方程所构建的数学模型不具有通用的规则。首先,要确定方程中的变量,对变量和变化率、微元之间的关系进行分析,然后运用相关的物理理论、化学理论或者工程学理论对其进行实验,运用所得出的定理、规律来构建微分方程;其次,对其进行求解和验证结果。微分方程的概念主要从实际引入,坚持由浅入深的原则,来对现实问题进行解决。例如,在对学生讲解外有引力定律时,让学生对万有引力的提出、猜想进行探究,了解到在其发展的整个过程中,数学发挥着十分重要的作用。

(3)定积分

微元法思想用途比较广泛,其主要以定积分概念为基础,在数学中渗入定积分概念,让学生对定积分概念的意义进行分析和了解,这样有利于在对实际问题进行解决时,树立“欲积先分”意识,意识到运用定积分是解决微元实际问题的重要方法。教师在布置作业题时,要增加该问题的实例。

数学建模案例分析范文大全 第10篇

随着社会经济的飞速发展,数学在各种领域中所发挥的作用也越来越显著“高技术实质即数学技术”这一观点广受肯定,有关数学的应用性也备受社会各界关注和重视。为了反映社会及经济发展的需要,我国教育在培养学生时,除了要求其掌握理论知识以外,还要求其能够利用数学思想及方法,及时发现和解决实际中所遇到的各类问题,最终成为同社会及经济发展相适应的应用型人才。而这种利用数学思想分析实际问题,找到数学关系及规律,并将该问题转变为数学问题,构建相应的数学模型,从而解决问题的过程即数学建模。为此,各高校在培养应用型人才时,必须注重加强学生数学建模能力的提升。

一、对高校应用型人才培养的认识

所谓的“应用型人才”,指的是能够利用所学知识及专业技能在社会及经济活动中予以正确实践的专业化人才,也是具备生产一线基础知识及技能,专门从事一线生产的人才。社会对于应用型人才提出了如下要求:不仅具备扎实的基础,宽泛的知识面,较强的应用能力,还具有较高的素质,拥有创新及团队合作意识。其突出特点即知识面宽广、理论基础深厚,可以讲所学知识正确地应用于相关行业领域,同时,能够适应市场经济发展对于人才需求的逐步变化,还具有进一步接受教育与汲取新知识的能力,能够逐步扩展同职业相关的学科能力。

随着我国各大高校扩招力度逐步加大,高等教育正在逐步朝着大众化趋势发展,传统学术型或研究型人才培养模式面临着越来越严峻的挑战,为此,不少发达国家纷纷提出了“培养应用型人才,发展应用型高校”等战略方针。其中,德国早在上个世纪70年代就已经成立了首座应用型科技大学,专门培养和发展应用型人才,并受到了普遍的欢迎,此外,美、英、日也纷纷建立了应用型高校。近些年来,我国各大院在培养应用型人才方面也取得了显著的成果,但由于认识方面存在不足,因此,应用型培养方案及实施过程仍存在诸多问题,培养模式有待进一步完善。经多年探索,结合数学在各个领域中的广泛应用及培养应用型人才的相关要求,借助于数学建模加快高校应用型人才的培养具有十分重要的作用。

二、数学建模对我国高校应用型人才培养的现实作用分析

数学建模需要利用数学知识、语言及方法,对实际问题进行刻画,对于已建立的模型通过推理、证明、计算等,并通过数学软件来求解,对求出的结果同实际问题相似合。具体而言,数学建模对我国高校应用型人才培养的作用表现在如下方面:

(一)有助于团队合作意识的培养

鉴于实际问题往往相对复杂,因此,数学建模时需要搜集大量的数据及信息,并对这些数据进行筛选、分析和处理,建模时通常需要对模型进行假设、建立、求解,并对模型的计算进行设计,利用计算机软件对结果进行分析和检验,将结果同实际问题进行拟合,此过程在短暂的时间内,仅仅依靠一个人的力量是很难完成的,因此,数学建模过程往往需要组建一个团队,要求学生相互之间、师生间以及与社会间进行有效地沟通与合作。因此,数学建模有助于培养学生的团队合作意识,这方面恰恰是社会对于应用型人才培养的最基本要求之一。

(二)有助于创新能力的培养

由于数学建模过程中所涉及的数据多数杂乱无章,因此,要求学生能够有效地进行筛选,去粗取精,经过一系列归纳、整理、加工、提炼与总结,对已知条件进行量化,并对数学关系进行恰当描述,最终组建出相应的.数学模型,再通过所学理论及方法对该模型进行求解。为了简化实际问题,必须针对各种因素进行分析,对其中可忽略不计的因素进行判断,这要求学生必须对实际问题具有深刻地理解,明确研究目标及数学背景,以完成这一创造性的过程。此外,数学模型必须对实际问题进行真实、近似地刻画,以求所构建模型能够近乎完美、全面地表达这一实际问题,同时,还要求该模型容易求解,为此,必须对该模型进行不断改善,要求学生可以进入更深的知识层面中,反复产生更多新问题,往复循环,从而实现学生创新能力地逐步提高,满足应用型人才的相关要求。

(三)有助于学生综合素质及能力的培养

数学建模实质上就是综合运用数学知识及方法解决社会实践问题的过程,要求学生除了具备扎实的数学基础及逻辑思维能力以外,还对实际问题的背景具有一定的了解,能够对所具备的各类知识进行融会贯通。数学建模数据庞大而又复杂,因此,处理数据不仅需要分析和综合,还需要抽象、概括、比较、类比等多个过程,经过如此种种的培养,学生应变能力、全面分析及综合思考能力均得到了有效地提高,逐步加强了个人的综合素质及能力培养,这也是成为应用型人才的基本要求。

(四)有助于学生实践操作能力的培养

通常而言,以实际问题为依据所抽象和建立起的数学模型往往十分复杂,因此,数学模型求解过程也很困难,甚至难以求出解析解,即使可以求得也因过于复杂而缺乏足够的应用价值。因此,求解数学模型时需对计算方法进行设计和编写,利用数学软件对该数值解进行计算,要求学生必须具备数学软件及计算机操作及运用能力,经这些过程的锻炼,学生实践动手能力也势必得到了大幅度地提高。此外,数学建模需进行调研,对数据进行广泛搜集和补充,此即培养应用型人才中所格外关注的践性。

(五)全面体现了理论知识的实践应用性

数学建模中存在许多较为典型的案例,例如,“最优化捕鱼策略”,“投资收入及风险”等等,这些都凸显了数学知识强大的应用性。因此,数学建模已经成为数学应用的必经之路,也是将数学和社会实践联系起来的枢纽和桥梁。数学建模需借助于数学知识及方法,对所需解决的问题进行刻画,同时,数学建模还必须对所计算的结果同实际问题相似合,其全面体现了数学理论知识的实践应用性,这方面同社会对于应用型人才培养的要求是相互契合的。

(六)有助于学生自主学习及表达能力的培养

数学建模要求学生自主分析、探索和解决问题,无论是数据收集、补充、完善,还是构建模型,都需要学生主动参与其中,独立解决求解等过程,此外,建模需要全面运用各个专业学科知识,掌握不同的背景资料,科学判断和取舍相关数据,同时,要求自主查询实际问题所涉及到的知识及资料,所有这些都为培养学生的自主学习能力提供了良好的条件。数学建模过程要求采用学生自己的语言对实际问题进行描述和解决,需要深度地沟通和交流,也需要对论文进行写作,因此,这些也提高了他们的语言组织及表达能力。在培养应用型人才时,一个显著特点即要求其具备继续教育及汲取新知识的能力,能够拓展同职业相关的理论专业知识及技能,而数学建模培养了学生的自主学习及语言表达能力,为他们进一步汲取新知识、提高新技能打下了坚实的基础。

可以这样说,经过数学建模的系统化训练,学生收获了探索实际问题的真实体验,提高了信息收集、筛选、分析及运用能力,明白了分享与合作的重要性,锻炼了洞察力、意志力、自主学习、语言表达、专业知识综合运用、分析及解决问题的能力等等,所有这些都满足应用型人才培养目标,同应用型人才培养模式的要求保持一致。因此,数学建模在高校应用型人才培养过程中发挥着巨大的作用。

三、提高大学生数学建模能力的若干建议

(一)设立专门的数学建模课程

高校应设立专门的数学建模课程,要求数学教师必须具备足够的数学建模知识及能力,一方面,能够在课堂教学过程中渗透数学建模思想及应用的重要性;另一方面,可以将数学建模和学科知识理论相结合,游刃有余地引导学生学习和应用数学知识及方法。利用实践问题及典型案例,灵活穿插于课程教学之中,使学生逐步提高数学建模能力,并对数学建模产生浓厚的兴趣。

(二)将应用型人才培养目标与数学建模相结合

要明确学生的主体地位,无论教学还是数学建模竞赛辅导,都必须将课堂主体这一地位让出来,让学生自主进行案例阅读、信息搜集及处理、模型建立及讨论,将大家从被动接受转变为主动探索与思考,提高其学习兴趣,同时,充分发挥其潜力,提高其独立思考及解决问题的能力,逐步提高自身的综合素质,不断朝着应用型人才方向发展。应用型人才培养要体现专业优势,它与数学建模是紧密联系的。在实际培养过程中,要以数学科目为基础,运用数学软件等工具,为数学建模提供必要的支持,并为日后在社会实践中的应用打下良好的基础。

(三)抓好建模教学两大阶段

一是在全校范围内开设建模课程,便于有兴趣的学生学习基础性的建模知识,接触简单的问题及模型,了解数学建模课程的基本方法和内容;二是暑期强化培训阶段,为了更好地应对数学建模竞赛,必须对学生的数学建模能力进行强化锻炼,提高其数学应用能力。在这两个阶段内,教师的作用至关重要,暑期培训主要针对的是有一定专业基础、自主动手能力较强、建模积极性较高的学生。因此,在这个阶段,应选择历届数学建模竞赛题向学生进行讲解,由拥有丰富经验的教师进行专题报告,同时,组织大学生对竞赛进行模拟,由往届学生传授竞赛经验,使学生自主寻找解决问题的方法,提高创新能力。

(四)设立数学建模小组及建模协会

在教学培养中设立数学建模竞争小组,依据现有师资力量,对不同资质、兴趣、特长和专业的教师进行分组。不同类型小组负责指定工作内容,要保证培训、学习和竞赛目标的高效完成。此外,还可设立相应的建模协会,组建对外开放的数学建模实验室,建模协会每年定期在校园内举报建模竞赛,请教师或历届获奖学生进行建模知识讲座,对数学建模进行宣传,培养大学生的学习兴趣,为优秀参赛人员的选拔奠定基础,这样不仅丰富了学生业余文化生活,还提高了其科研水平。

数学建模案例分析范文大全 第11篇

一、充分发挥学生主观能动性并对问题进行简化、假设

学生的想象力是非常丰富的,这对数学建模来说是很有利的。所以教学时要充分发挥学生的想象力,让学生通过小组合作来进一步加深对问题的理解。我们要求的是两车相遇的时间,那么我们可以通过设一个未知数来代替它。根据速度×时间=路程,可以假设时间为x小时,根据题意列出方程:65x+55x=270

二、学生对简化的问题进行求解

第三步,就是要给刚才列出的方程,进行变形处理,变成学生熟悉的,易于解答的算式,如上题可以通过乘法分配律将等式写成120x=270,利用乘法算式各部分间的关系,积÷一个因数=另一个因数,得x=。有的方程并不是通过一步就能解决,这时就显示了简化的重要性,需对方程进行一定的变形、转化。

三、展示和验证数学模型

当问题解决后,就要对建立的模型进行检验,看看得到的模型是否符合题意,是否符合实际生活。如上题检验需将x=带入原式。左边=65××,右边=270。左边=右边,所以等式成立。在这个过程中,可以体现出学生的数学思维过程与其建模的逻辑过程。教师对于学生的这方面应进行重点肯定,并鼓励学生对同学间的数学模式进行点评。一般而言,在点评时要求学生把相互间的模式优点与不足都要尽量说出来,这是一种提高学生对数学语言运用能力与表达能力的训练,也能让学生在相互探讨的过程中,得以开启思路,博采众长。

四、数学模型的应用

来自于生活实际的数学模式其建模的目的是为了解决实际问题。所以立足于此,建模的实际意义应在于其应用价值。模型应具有普遍适应性,不能是一个模型只能解决一个实际问题,这样的模型是不符合要求的。所以在建模时需要考虑要建的模型是否有实用价值,是否改变一下,还能通过怎样的方法进行解题,如果数学模型只适合一题,不适合相关题,就没有建立模型的必要。如给出这样的题目:两地之间的路程是420千米,一列客车和一列货车同时从两个城市相对开出,客车每小时行55千米,火车的速度是客车的1011,两车开出后几小时相遇?我们就可以通过刚才的'模型来解题。设两车开出后x小时相遇。55x+55×1011x=420解得x=4将x=4代到方程的左边=55×4+55×1011×4=420,右边=420,左边=右边,所以x=4是方程的解,符合题意。这样,完整的数学模型就建立了。为以后相似类型的题建立了一个模型,遇到这样的题就可以通过这个模型来做。在小学数学教学中,许多内容都可以在学生的生活实际中找到背景。在数学建模活动中,向学生展示的也是他们身边的事,解决的又是他们碰到的实际问题。因此,让学生从生活实际出发,创建数学模型,不仅能够激发起他们学习数学的兴趣,让他们觉得学有所用,更能培养他们的数学眼光,在碰到问题的时候,能够从数学的角度加以思考,而且能够给他们以后学习打下基础。再者,在数学思想中,数学知识得以形成与体现。而数学概念则是根据数学知识的现象所总结出来的。相关的数学规律与数学问题的解决,更是一种对于数学思想的实际应用。总的来说,建模思想可以帮助学生更进一步地感悟数学思想,积累数学经验,起到举一反三、触类旁通的作用。既然,建模具有种种优点,其有效运用能为小学数学教学提供许多帮助,那么何不以此为契机,形成更为开放的数学教学体系和手段,培养更具主动意识和操作能力的学生呢?

数学建模案例分析范文大全 第12篇

一、数学建模与数学建模意识

数学建模是对实际问题本质属性进行抽象而又简洁刻划的数学符号、数学式子、程序或图形,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。而应用各种知识从实际问题中抽象、提炼出数学模型的过程,我们称之为数学建模。它的灵魂是数学的运用,它就象阵阵微风,不断地将数学的种子吹撒在时间和空间的每一个角落,从而让数学之花处处绽放。

高中数学课程新标准要求把数学文化内容与各模块的内容有机结合,数学建模是其中十分重要的一部分。作为基础教育阶段――高中,我们更应该重视学生的数学应用意识的早期培养,我们应该通过各种各样的形式来增强学生的应用意识,提高他们将数学理论知识结合实际生活的能力,进而激发他们学习数学的兴趣和热情。

二、高中数学教师必须提高自己的建模意识、积累自己的建模知识。

我们在教学内容和要求上的变化,更意味着教育思想和教学观念的更新。数学建模源于生活,用于生活。高中数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把高中数学知识应用于现实生活。作为高中数学教师,在日常生活上必须做数学的有心人,不断积累与数学相关的实际问题。

三、在数学建模活动中要充分重视学生的主体性

提高学生的主体意识是新课程改革的基本要求。在课堂教学中真正落实学生的主体地位,让学生真正成为数学课堂的主人,促进学生自主地发展,是现代数学课堂的重要标志,是高中数学素质教育的核心思想,也是全面实施素质教育的关键。高中数学建模活动旨在培养学生的探究能力和独立解决问题的能力,学生是建模的主体,学生在进行建模活动过程中表现出的主体性表现为自主完成建模任务和在建模活动中的互相协作性。中学生具有好奇、好问、好动、好胜、好玩的心理特点,思维开始从经验型走向理论型,出现了思维的独立性和批判性,表现为喜欢独立思考、寻根究底和质疑争辩。因此,教师在课堂上应该让学生充分进行自主体验,在数学建模的实践中运用这些数学知识,感受和体验数学的应用价值。

教师可作适当的点拨指导,但要重视学生的参与过程和主体意识,不能越俎代庖,目的是提高学生进行探究性学习的能力、提高学生学习数学的兴趣。

四、处理好数学建模的过程与结果的关系

我国的中学数学新课程改革已进入全面实施阶段。新的高中数学课程标准强调要拓宽学生的数学知识面,改善学生的学习方式,关注学生的学习情感和情绪体验,培养学生进行探究性学习的习惯和能力。数学建模活动是一种使学生在探究性活动中受到数学教育的学习方式,是运用已有的数学知识解决问题的教与学的双边活动,是学生围绕某个数学问题自主探究、学习的过程。新的高中数学课程标准要求把数学探究、数学建模的思想以不同的形式渗透在各模块和专题内容之中,突出强调建立科学探究的学习方式,让学生通过探究活动来学习数学知识和方法,增进对数学的理解,体验探究的乐趣。 五、数学建模教学与素质教育

数学建模问题贴近实际生活,往往一个问题有很多种思路,有较强的趣味性、灵活性,能激发学生的学习兴趣,可以触发不同水平的学生在不同层次上的创造性,使他们有各自的收获和成功的'体验。由于给了学生一个纵情创造的空间,就为学生提供了展示其创造才华的机会,从而促进学生素质能力的培养和提高,对中学素质教育起到积极推动作用。

1.构建建模意识,培养学生的转换能力

_曾说过:“由一种形式转化为另一种形式不是无聊的游戏而是数学的杠杆,如果没有它,就不能走很远。”由于数学建模就是把实际问题转换成数学问题,因此如果我们在数学教学中注重转化,用好这根有力的杠杆,对培养学生思维品质的灵活性、创造性及开发智力、培养能力、提高解题速度是十分有益的。学生对问题的研究过程,无疑会激发其学习数学的主动性,且能开拓学生的创造性思维能力,养成善于发现问题、独立思考的习惯。教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识。

2.注重直觉思维,培养学生的想象能力

众所周知,数学史上不少的数学发现都来源于直觉思维,如笛卡尔坐标系、歌德巴赫猜想等,应该说它们不是任何逻辑思维的产物,而是数学家通过观察、比较、领悟、突发灵感发现的。通过数学建模教学,使学生有独到的见解和与众不同的思考方法,如善于发现问题,沟通各类知识之间的内在联系等是培养学生创新思维的核心。七年级的教材里,以游戏的方式编排了简单而有趣的概率知识,如转盘游戏,扔硬币来验证出现正面或反面的概率等等。通过有趣的游戏,激起了学生学习的兴趣,并了解到概率统计知识在社会中应用的广泛性和重要性。

3.灌输“构造”思想,培养学生的创新能力

“一个好的数学家与一个蹩脚的数学家之间的差别,就在于前者有许多具体的例子,而后者则只有抽象的理论。”我们前面讲到,“建模”就是构造模型,但模型的构造并不是一件容易的事,又需要有足够强的构造能力,而学生构造能力的提高则是学生创造性思维和创造能力的基础:创造性地使用已知条件,创造性地应用数学知识。

数学建模案例分析范文大全 第13篇

数学建模即运用数学知识与数学思想,通过对实际问题数学化,建立数学模型,并运用计算机计算出结果,对实际问题给出合理解决方案、建议等。系统的谈数学建模需从以下三个方面谈起。

1.数学建模课程。

“数学建模”课程特色鲜明,以综合门类为基础,重实践,重应用。旨在使学生打好数学基础,增强应用数学意识,提高实践能力,建立数学模型解决实际问题。注重培养学生参与现代科研活动主动性与参与工程技术开发兴趣,注重培养学生创新思维及创新能力等相关素质。

2.数学建模竞赛。

1985年,美国工业与应用数学学会发起的一项大学生竞赛活动名为“数学建模竞赛”。旨在提高学生学习数学主动性,提高学生运用计算机技术与数学知识和数学思想解决实际问题综合能力。学生参与这项活动可以拓宽知识面,培养自己团队意识与创新精神。同时这项活动推动了数学教师与数学教学专家对数学体系、教学方式与教学知识重新认识。1992年,教育部高教司和中国工业与数学学会创办了“全国大学生数学建模竞赛”。截止20xx年10月已举办有21届。大力推进了我国高校数学教学改革进程。

3.数学建模与创新教育。

创新教育是现代教育思想的灵魂。数学建模竞赛是实现数学教育创新的重要载体。如20xx年A题,葡萄酒的评价中,要求学生对葡萄酒原料与酿造、储存于葡萄酒色泽、口味等有全面认识;而20xx年D题,机器人行走避障问题,要求学生了解对机器人行走特点;20xx年B题,乘公交看奥运,要求学生了解公交换乘系统。大学生数学建模竞赛试题涉及不是单一数学知识。因此数学教师在数学教学中必须融合其它学科知识。同时学生参与数学建模竞赛有助于增强其积极思考应用数学知识创造性解决实际问题的意识。

数学建模案例分析范文大全 第14篇

一、小学数学建模

_数学建模_已经越来越被广大教师所接受和采用,所谓的_数学建模_思想就是通过创建数学模型的方式来解决问题,我们把该过程简称为_数学建模_,其实质是对数学思维的运用,方法和知识解决在实际过程中遇到的数学问题,这一模式已经成为数学教育的重要模式和基本内容。叶其孝曾发表《数学建模教学活动与大学数学教育改革》,该书指出,数学建模的本质就是将数学中抽象的内容进行简化而成为实际问题,然后通过参数和变量之间的规律来解决数学问题,并将解得的结果进行证明和解释,因此使问题得到深化,循环解决问题的过程。

二、小学数学建模的定位

1.定位于儿童的生活经验

儿童是小学数学的主要教学对象,因此数学问题中研究的内容复杂程度要适中,要与儿童的生活和发展情况相结合。_数学建模_要以儿童为出发点,在数学课堂上要多引用发生在日常生活中的案例,使儿童在数学教材上遇到的问题与现实生活中的问题相结合,从而激发学生学习的积极性,使学生通过自身的经验,积极地感受数学模型的作用。同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的.挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。

2.定位于儿童的思维方式

小学生的特点是年龄小,思维简单。因此小学的数学建模必须与小学生的实际情况相结合,循序渐进的进行,使其与小学生的认知能力相适应。

实际情况表明,教师要想使学生能够积极主动的思考问题,提高他们将数学思维运用到实际生活中的能力,就必须把握好儿童在数学建模过程中的情感、认知和思维起点。我们以《常见的数量关系》中关于速度、时间和路程的教学为例,有的老师启发学生与二年级所学的乘除法相结合,使乘除法这一知识点与时间、速度和路程建立了关联,从而使_数量关系_与数学原型_一乘两除_结合起来,并且使学生利用抽象与类比的思维方法完成了_数量关系_的_意义建模_,从而创建了完善的认知体系。

三、小学_数学建模_的教学策略

1.培育建模意识

当前的小学数学教材中,大部分内容编排的思路都是以建模为基础,其内容的开展模式主要是_生活情景到抽象模型,然后到模型验证,最后到模型的运用和解释_.培养建模思维的关键是对教材的解读是否从建模出发,使教材中的建模思想得到充分的开发。然后对教材中比较现实的问题进行充分的挖掘,将数学化后的实际问题创建模型,最后解决问题。教师要提高学生对建模的意识与兴趣就要充分挖掘教材,指导学生去亲身体会、思考沟通、动手操作、解决问题。其次,通过引入贴近现实生活、生产的探索性例题,使学生了解数学是怎样应用于解决这些实际问题的。同时,让学生在利用数学建模解决实际问题的过程中理解数学的应用价值和社会功能,不断增强数学建模的意识。

2.体验建模过程

在数学的建模过程中,要将生活中含有数学知识与规律的实际问题抽象化,从而建成数学模型。然后利用数学规律对问题进行推理,解答出数学的结果后再进行证明和解释,从而使实际问题得到合理的解决。我们以解决问题的方法为例,使学生能够解决题目不是教学的唯一目的,使学生通过对数学问题的研究和体验来提升自己_创建_新模型的能力。使学生在不断的提出与解决问题的过程中培养成自主寻找数学模型和数学观念的习惯。如此一来,当学生遇到陌生的问题情境,甚至是与数学无关的实际问题时,都能够具备_模型_思想,处理问题的过程能具备数学家的_模型化_特点,从而使_模型思想_影响其生活的各个方面。

3.在数学建模中促进自主性建构

要使_知识_与_应用_得到良好的结合就必须提高学生积极构建数学模型的能力。我们要将数学教学的重点放在对学生观察、整合、提炼_现实问题_的能力培养上来。教学过程中,通过对日常问题的适当修改,使学生的实际生活与数学相结合,从而提升学生发现和提出问题,并通过创建模型解决问题的能力,为学生提供能够自主创建模型的条件。

我们以《比较》这课程内容为例,我们通过_建模_这一教学方法,培养学生对_>__<_和_=_的掌握与使用,进而使学生明确了解_比较_的真正含义。首先,利用公园或者学校等地方的跷跷板为素材,让学生了解自己的哪个伙伴被压上去,哪个伙伴被压下来;然后让班级的高矮不同的同学进行身高比较。最后将上面这些情景在课堂上通过多媒体手段展现出来,由于这些情景都是学生曾亲身体验过的,此时再叫他们去做_重量_或者_高度_的比较,他们就可以轻松的掌握_>__<_和_=_等符号。这种将学生的实际生活与课堂教学相结合的方法,使学生能够轻松的创建其数学模型,提升他们自主建模的信心。

四、总结

数学建模是将实际生活与数学相结合的有效途径和方法。学生在创建数学模型的过程中,其思维方式也得到了锻炼。小学阶段的教学,其数学模型的构建应当以儿童文化观为基础,其目的主要是培养儿童的建模思想,这也是提升小学生学习数学积极性,提升课堂文化气息的有效方法和途径。

数学建模案例分析范文大全 第15篇

1.数学模型建构的方法及分析

数学模型是通过建立数学系统,对生命现象进行量化,以数量关系描述生命现象,再运用逻辑推理、求解和运算等达到对生命现象进行研究的目的。

数学模型的建构一般方法为:模型准备---模型假设---模型建立---模型检验---模型应用

1.1 数学模型的建构方法(以《建构种群数量增长模型》为例)

模型准备----研究对象,提出问题;在自然界中如何有效地控制有害细菌的繁殖,必须先找出细菌增长的规律;

模型假设—--合理简化,提出假设;在自然界影响细菌生长的因素很多,我们先抛开次要因素,假设在“理想环境条件下,即资源和空间无限多的环境中,细菌的种群增长不会受种群密度增加的影响。

模型建立----理清关系,建立模型;在理想条件下,若某细菌每繁殖一代所用的时间为20min,则随着时间的推移,则Na=2n,在坐标图上呈“J”型增长。

模型检验----实践检验,修正模型;上述得出的公式和增长曲线,在自然界是否也是这样的呢?需经过实践的检验(举例检验)。实际上在自然界生物生存的空间和资源总是有限的,当种群增加到一定数量时,种群的增长就会停止,有时会稳定在一定的水平,如果用坐标图来表示的话,就会呈“S”型。

模型应用----实际应用,产生效应。利用“S”型曲线,可以指导我们正确利用野生生物资源,取得经济效益、生态效益和社会效益的全面丰收。例如对捕鱼业的指导等。

1.2分析

1.2.1 在此模型的建构教学中,引导学生循着现象本质现象,或者具体抽象具体的思路,通过分析问题探究数学规律解决实际问题建构数学模型的方法,让学生体验由具体到抽象的思维转化过程;此模型的也是数学模型建立的典范,给我们呈现了数学模型建构的一般方法。

1.2.2 培养学生透过现象揭示本质的洞察能力和严密的思维品质。如在遗传规律的模型建构教学中,以一对相对性状的遗传实验为基础,首先让学生从F2及测交后代不同表现型具体的数量中抽象出3:1,1:1的比例关系,从而理解含一对等位基因的杂合子产生的配子种类、子代基因型及表现型的种类及比例,然后借助遗传图解和概率的计算,推理出两对位于非同源染色体上的非等位基本的遗传结果,最后揭示出含n对非等位基因的杂合子的遗传行为和结果,在此过程中培养学生严密的思维品质。

2.物理模型建构方法及分析

物理模型是指直观反映认识对象的形态结构的实体或图画。本文探讨的是实体模型,即采用把原型缩小或放大一定的几何尺寸并经简化处理而制成的模型。。

实体模型的建构一般方法为:提出问题---根据假设建立模型----检验模型----得出结论。

2.1物理模型建构方法(以《生物膜的流动镶嵌模型》为例)

提出问题:J. D. Robertson罗伯特森在电子显微镜下观察细胞膜显示的暗—明—暗三层结构,他提出:两边暗色的部分是蛋白质层,呈对称排列;内部浅色部分是双分子层,提出单位膜模型。

模型建立:学生独立构建单位膜模型。

检验模型:由理化特性来验证一下模型的正确性。任何一个模型的提出,必须经得住实践的检验。①利用冰冻蚀刻技术得到的蛋白质排布模式图,从实验结果可以看出有些蛋白质是嵌入磷脂内部的,且排布并不均匀也不对称。②1970年,Larry Frye等利用荧光标记小鼠细胞和人细胞融合实验?证明了蛋白质分子也是可以运动的。③动物细胞吸水膨胀时,磷脂双分子层的厚度变小,说明磷脂分子也可以运动的.

得出结论:蛋白质分子有的镶嵌在磷脂双分子层表面,有的部分或全部嵌入磷脂双分子层中,有的横跨整个磷脂双分子层,修正了膜呈对称排列的观点。

2.2分析

2.2.1 物理模型的构建是通过抽象建立物理对象,通过类比和假说建立物理过程,并进行实验模拟的过程。在此案例教学中,让学生学会从复杂性的物理现象(暗—明—暗的三层结构)中抽取出来并简化;

2.2.2 物理模型不仅反映了原型的直观形象,揭示了原型的主要特征,抓住了主要因素,而且要以观察所积累的知识和实验事实为依据,经过分析、综合、比较、抽象、概括、推理等一系列严格的逻辑论证而建立起来,它不仅能解释已有的现象,而且有预见性;由此可以培养学生分析、综合等能力;

2.2.3 物理模型的建立与建立者的学识、胆识、观察能力、实验能力、对原型的简化方式有极大的关系,因为建立的模型带有一定的主观性。有的模型被证明是正确的,有的在一定的范围内适用,有的则被证明是错误的。由此引导学生一要对立辨证的观点;二要激发学生的创新意识,加强创造能力的培养。

2.2.4 在中学生物中还有许多物理模型如DNA双螺旋结构模型(必修二第3章第2节)、生态系统的结构模型(必修三第5章第1节)等,在教学中可以采用上述的建模方法进行教学。

物理模型具有形象直观性、应用广泛性、综合性等特点;在教学中建立物理模型时,要注意流程的合理性,指导的科学性,从而使学生在掌握模型方法的同时培养学生的探究能力。

3.概念模型建构的方法及分析

概念模型是指以文字表述来抽象概括出事物本质特征的模型。它的建模过程:明确任务---明确各因素的特性---建立各因素之间关系---确定各因素之间的影响方式,完善模型。

3.1概念模型建构方法(以《建立激素反馈调节模型》(必修三:第2章第2节)为例)

明确任务:熟悉所构建要求。研究的是激素反馈调节模型的建立,以甲状腺激素分泌的调节为例,所以分析的着眼点应放在反馈调节上。

明确各因素的特性:从甲状腺激素的反馈调节看,与此相关的因素有①甲状腺激素;②甲状腺;③细胞代谢;④促甲状腺激素(TSH);⑤垂体;⑥促甲状腺激素释放激素(TRH);⑦下丘脑;

建立各因素之间的关系,构建初始模型:从分析上述各因素的特性,可以由学生构建简单的初级模型。如:下丘脑---TRH—垂体—TSH---甲状腺—甲状腺激素---细胞代谢。

确定各因素之间的影响方式,完善模型:带领学生分析上面的概念图,发现隐含着许多问题,特别地,其中各级要素间只是一种递阶结构关系,即级与级间不存在反馈回路。但在分析实际问题时,名级要素间则往往是存在着反馈回路的,例如甲状腺激素的多少会影响垂体和下丘脑的分泌活动也就是说甲状腺激素分泌过 多,抑制垂体和下丘脑的分泌,甲状腺激素分泌过少,会促进垂体和下丘脑的分泌,从而形成一个负反馈回路。由此,可构建出更为完善的概念模型。

3.2分析:

3.2.1 各因素即为实体,实体是指客观存在并且可以相互区别的事物。实体的属性即为实体的特性。

3.2.2有助于理解和把握生物学的核心概念。在建立光合作用过程的模型过程中,能够帮助学生理解该节内容所含的一些核心概念:如“光合色素”、“光合膜”、“光反应的过程”、“暗反应的过程”、“光反应和暗反应的联系”,而且学生只有掌握了这些核心概念,才能顺利建立模型。

数学建模案例分析范文大全 第16篇

第一,能够激发学生学习高数的兴趣。建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。例如,在讲解微分方程时,可以引入一些历史上的一些著名问题,如以Vanmeegren伪造名画案为代表的赝品鉴定问题、预报人口增长的Malthus模型与Logistic模型等。 这样,才能激发出学生对高等数学的兴趣,并积极投入高等数学的学习中来。

第二,能够提高学生的数学素质。社会的高速发展不断要求学生向更全面、更高素质的方向发展。这就要求学生不仅要懂得专业知识,还要能够将专业知识运用到实际生活中,拥有解决问题的头脑和实际操作的技能。这些其实都可以通过建模思想在高等数学课堂中实现。高等数学的包容性、逻辑性都很强。将建模思想融入高等数学的教学中,既能提高学生的数学素质,还能锻炼学生综合分析问题,解决问题的能力。通过理论与生活实践相结合,达到社会发展的要求,提高自身的社会竞争力。

第三,能够培养学生的综合创新能力。“万众创新”不仅仅是一个口号,而应该是现代大学生应该具备的一种能力。将数学建模思想融入高等数学教学中,能让大学生从实际生活出发,多方位、多角度考虑问题,提高学生的创新能力。学生的潜力是可以在多次的建模活动中挖掘出来的。因此教师应多组织建模活动,让学生从实际生活中组建材料,不断创新思维,找到解决问题的方式与方法。

数学建模案例分析范文大全 第17篇

该生有较强的查阅文献资料的能力,能全面搜集有关论题的资料和学术信息,在撰写的过程中能综合运用自身所学的基础知识及专业理论,对论题进行全面的探讨和深入的分析。

该生通过着手分析当前的现实状况,明确了其存在的原因和问题症结点,并提出了一系列有效可行的措施,进而对有关现实问题的解决起到了一定的帮助作用,具有应用价值。

该论文思路清晰、内容充实、观点明确、论据充分、论证严格,整篇论文的逻辑性强,层次清晰,结构合理,文笔流畅,完全符合论文的标准和规范。 该生具有优秀的分析问题和解决问题的能力,对有关问题见解独特,论文研究有一定的深度,并且具有较强的时效性。

该生的综合能力反映了学士学位应具备的优秀水平,其论文达到了本科优秀论文的水准。

数学建模案例分析范文大全 第18篇

在得知xxxx年全国大学生数学建模竞赛中,我们队(队员:)获得xxxx省赛区二等奖的时候,我并不喜出望外,反而觉得有点遗憾,有点可惜,因为我们没有完全发挥出水平,这样成绩对我们来说并不理想。其实这也是在我的预料之中的。以下是我个人在这次比赛中的感受:

在数模竞赛中想获得好成绩,进军全国评选并非易事。首先模型要建得好,其次文本要写得好,即叙述要简洁,文字要流畅,逻辑严谨。可要做到这两点并不容易,每个问题涉及的知识面很广,要求有扎实的数学基础,需要掌握高等数学,线性代数,离散数学,概率与数理统计理论,有时还要涉及物理等等方面的知识,这有赖于我们平时不懈的努力和刻苦的`学习钻研。此外,开始建立的模型并不是最优的,需要反复修改,不断优化,最后才能求出最优解。建立好数学模型后,接下来是写文本,文本必须简洁,让人容易看懂,如果文本写得不好,不能把模型正确表达出来,也不能取得好成绩。因为文本在评分中占了很大的比例,直接影响我们的论文是否能够获得高分。

比赛的形式是以三人为一对的,队员之间分工合理、科学与否直接影响比赛成绩。如果能充分发挥各个队员的优势,那么这是最好的。例如,文笔好的负责写文本,数学好的负责建立模型,查资料,编程好的负责编程求解。也就是团队精神,在意见有分歧的时候,要顾全大局,而不要各做各的,互不谦让,这一点无论做什么都是至关重要的。

在这次比赛中,我们队合作得很愉快,配合也很默契,所以我们很顺利的建立了模型,并求出了模型的解。在与同学们和老师讨论过程中,我们发现很多他们讨论的问题,是我们小组讨论过,并证明过不是最优解的模型。可以说我们是最早建立模型的,并得出模型的解的。但我总觉得我们的文本写得不理想,不满意,这也没办法,因为我们花在第三个问题的时间太多了。以至到快要交卷的时候我们还忙于修改文本。

我已参加过两次比赛,两次的成绩都不错,因此我们组比别人有优势,有参赛的经验,除外,对于做题我们都很有经验,知道如何去查资料,怎样与指导老师讨论问题,可以说,有一种居高临下的感觉,游刃有余。

虽然我们没在全国上获奖,但我们已经尽了力,结果如何,都无怨无悔。最后我要感谢广州大学给我们提供这么一个参赛的机会,学校为了这次比赛,准备了很多人力物力,在比赛前一个月组织参赛的学生集训,这是我校在这次比赛中取得好成绩的原因之一。很多老师为了这次比赛花了很多心血,而且在比赛的最后一天,一些老师还陪着学生一起通宵达旦,这是难能可贵的精神,我想在我们学校应该大力发扬。预祝我校在今年的全国大学生数学建模取得更优异的成绩。

数学建模案例分析范文大全 第19篇

xxx数学建模xxx已经越来越被广大教师所接受和采用,所谓的xxx数学建模xxx思想就是通过创建数学模型的方式来解决问题,我们把该过程简称为xxx数学建模xxx,其实质是对数学思维的运用,方法和知识解决在实际过程中遇到的数学问题,这一模式已经成为数学教育的重要模式和基本内容。叶其孝曾发表《数学建模教学活动与大学数学教育改革》,该书指出,数学建模的本质就是将数学中抽象的内容进行简化而成为实际问题,然后通过参数和变量之间的规律来解决数学问题,并将解得的结果进行证明和解释,因此使问题得到深化,循环解决问题的过程。

数学建模案例分析范文大全 第20篇

通过对武汉2000-2012年相关数据进行线性回归预测,能够得到如下结论:

第一,由回归预测方程 可知,货物周转量与生产总值(GDP)呈正相关关系,具体表现为一单位的GDP增长,能够引起单位的货物周转量;同时由图2的曲线图可知,货物周转量存在明显的上升趋势。

第二,货物周转量是一个总体规模性指标,是从总量上反映物流需求。

这种方法比较概括,虽存在缺陷,但对物流需求的宏观把握,制定宏观物流发展战略还是颇具价值;同时,本文只研究了生产总值对货物周转量的影响,实际上,货物周围量的影响因素很多,比如宏观面上的经济政策,气候条件,微观层面上的运输距离以及货运总量等;另外,货物周转量只是代表物流需求的一个量,并不能完全代表物流需求,因而需要根据实际情况适实地对其加以修正。

参考文献:

[1]王雪瑞,王昭君.基于双变量线性回归模型的物流需求预测[J].物流科技. 2009(09).

[2]杨帅.武汉市物流需求预测[J].当代经济.2007(10).

[3]汪宇翰.预测物流需求的一元线性回归分析方法 [J].商场现代化.2006(13).

[4]李振,王兴秋,吴耀华.货运量回归预测工具EXCEL和SPSS结合应用研究[J].物流科技.2010(08).

[5]张文彤,闫洁.SPSS统计分析基础教程[M]. 北京:高等教育出版社,2004.

为纪念世界传统医药日,xx市中医药学会、xx市针灸学会联合xx注册中医学会定于20xx年10月23日举行大型纪念活动,召开深港中医药论坛。活动主题为“中医经方临床运用”。

现向xx及xx地区全体中医、中西医结合医务人员,活动方案如下:

一、内容:

历代经方家学说的整理和研究;经方在世界的传播与应用研究;经方理论探源;经方验案总结;经方师承经验总结、体会;经方方证研究;经方药证研究;经方合方和加减原则研究;经方疗程与疗效评价标准研究;经方量效关系研究;经方制剂规范研究;经方医学史考证研究;经方相关问题多学科研究、经方教学法研究等。

二、要求:

1.论文具有真实性、科学性、先进性,论点突出,文字准确,语言精练。

2.论文包括全文和中文摘要(300~500字)两部分,原则上全文不超过6000字。摘要包括2~5个关键词;论文要求引文准确,简明扼要,使用规范简化字、标点符号及法定计量单位;

3.会议论文以电子邮件形式发送至电子邮箱(注:凡通过电子邮件投稿者,请在邮箱“主题”一栏以文章名标识,稿件收悉后必有电子邮件回复,如未收到回复,建议重新发送)。论文一律用A4纸打印,字体选用宋体,题目3号字,小标题4号字,内容小4号字,挂号投寄并发送电子邮件。

5.凡不符合上述要求的稿件恕不受理。所有来稿均经专家评审,专家有权对论文提出修改意见,符合要求的论文将汇编成册,正式印刷出版。并组织评选优秀论文,对获奖优秀论文给予一定的奖励。

6.请自留底稿,无论录取与否,一律不予退稿。

7.截稿日期:20xx年9月5日(邮寄以邮戳为准,电子稿件以电脑系统时间为准)

三、联系方式

数学建模案例分析范文大全 第21篇

(一) 在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二) 讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三) 组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

精选图文

221381
领取福利

微信扫码领取福利

微信扫码分享