欢迎访问AA范文大全网!

小学百分数知识点总结(整理3篇)

梦幻星空 分享 时间: 加入收藏 我要投稿 点赞

本文共计3527个文字,预计阅读时间需要15分钟。

上学期间,大家对知识点应该都不陌生吧?知识点就是掌握某个问题/知识的学习要点。为了帮助大家更高效的学习,下面是小编为大家收集的小学百分数知识点总结,仅供参考,希望能够帮助到大家。

小学百分数知识点总结 篇1

一、百分数的意义:表示一个数是另一个数的百分之几。

注:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比,所以,百分数又叫百分比或百分率,百分数不能带单位。

1、百分数和分数的区别和联系:

(1)联系:都可以用来表示两个量的倍比关系。

(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。

百分数的分子可以是小数,分数的分子只以是整数。

注:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70、80%,出油率在30、40%。

2、小数、分数、百分数之间的互化

(1)百分数化小数:小数点向左移动两位,去掉“%”。

(2)小数化百分数:小数点向右移动两位,添上“%”。

(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。

(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。

(5)小数 化 分数:把小数成分母是10、100、1000等的分数再化简。

(6)分数 化 小数:分子除以分母。

二、百分数应用题。

1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几

2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。

求甲比乙多百分之几(甲-乙)÷乙

求乙比甲少百分之几(甲-乙)÷甲

3、求一个数的百分之几是多少,一个数(单位“1”) ×百分率

4、已知一个数的百分之几是多少,求这个数部分量÷百分率=一个数(单位“1”)

5、折扣,折扣、打折的意义:几折就是十分之几也就是百分之几十

6、纳税缴纳的税款叫做应纳税额。

(应纳税额)÷(总收入)=(税率)

(应纳税额)=(总收入)×(税率)

7、利率

(1)存入银行的钱叫做本金。

(2)取款时银行多支付的钱叫做利息。

(3)利息与本金的比值叫做利率。

利息=本金×利率×时间

税后利息=利息-利息的应纳税额=利息-利息×5%

注:国债和教育储蓄的利息不纳税

8、百分数应用题型分类

(1)求甲是乙的百分之几——(甲÷乙)×100% = ×100% = 百分之几

(2)求甲比乙多(少)百分之几—— ×100% = ×100%

①甲是50,乙是40,甲是乙的百分之几?(50是40的百分之几?)50÷40=125%

②甲是50,乙是40,乙是甲的百分之几?(40是50的百分之几?)40÷50=80%

③乙是40,甲是乙的125%,甲数是多少?(40的125%是多少?)40×125%=50

④甲是50,乙是甲的80%,乙数是多少?(50的80%是多少?)50×80%=40

⑤乙是40,乙是甲的80%,甲数是多少?(一个数的80%是40,这个数是多少?)40÷80%=50

⑥甲是50,甲是乙的125%,乙数是多少?(一个数的125%是50,这个数是多少?)50÷125%=40

⑦甲是50,乙是40,甲比乙多百分之几?(50比40多百分之几?)(50-40)÷40×100%=25%

⑧甲是50,乙是40,乙比甲少百分之几?(40比50少百分之几?)(50-40)÷50×100%=20%

⑨甲比乙多25%,多10,乙是多少?10÷25%=40

⑩甲比乙多25%,多10,甲是多少?10÷25%+10=50

乙比甲少20%,少10,甲是多少?10÷20%=50

乙比甲少20%,少10,乙是多少?10÷20%-10=40

乙是40,甲比乙多25%,甲数是多少?(什么数比40多25%?)40×(1+25%)=50

甲是50,乙比甲少20%,乙数是多少?(什么数比50多25%?)50×(1-20%)=40

乙是40,比甲少20%,甲数是多少?(40比什么数少20%?)40÷(1-20%)=50

甲是50,比乙多25%,乙数是多少?(50比什么数多25%?)40÷(1+25%)=40

小学百分数知识点总结 篇2

(一)、折扣和成数

1、折扣:用于商品,现价是原价的百分之几,叫做折扣。通称“打折”。

几折就是十分之几,也就是百分之几十。例如:八折=8/10=80%,六折五=6.5/10=65/100=65%

解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

商品现在打八折:现在的售价是原价的80%

商品现在打六折五:现在的售价是原价的65%

2、成数:

几成就是十分之几,也就是百分之几十。例如:一成=1/10=10%

八成五=8.5/10=85/100=80%

解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10%

今年小麦的`收成是去年的八成五:今年小麦的收成是去年的85%

(二)、税率和利率

1、税率

(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

(2)纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。

(3)应纳税额:缴纳的税款叫做应纳税额。

(4)税率:应纳税额与各种收入的比率叫做税率。

(5)应纳税额的计算方法:

应纳税额=总收入×税率

收入额=应纳税额÷税率

2、利率

(1)存款分为活期、整存整取和零存整取等方法。

(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。

(3)本金:存入银行的钱叫做本金。

(4)利息:取款时银行多支付的钱叫做利息。

(5)利率:利息与本金的比值叫做利率。

(6)利息的计算公式:

利息=本金×利率×时间

利率=利息÷时间÷本金×100%

(7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:

税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)

税后利息=本金×利率×时间×(1-利息税率)

购物策略:

估计费用:根据实际的问题,选择合理的估算策略,进行估算。

购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案。

数学最小的数是什么

要回答这个问题,我们首先看一下“几位数”的概念:在一个数中数字的个数是几(其最左端的数字不为0),这个数就是几位数。关于几位数的定义中,最左端的数字不为0是关键条件。就像我们分数定义中,明确规定分母不为0一样,否则没意义。

在整数中,最小的计数单位是1(个),当0单独存在时,它不占有数位。当0出现在一个几位数的末尾或中间时,它起到的只是“占位”的作用,表示该位上没有计数单位。

假设0也算一位数的话,那么最小的两位数是“10”还是“00”呢?00是没有两位数的意义的。

所以,一位数是由一个不是0这个数字写出的数,只要几位数的意义不变,最小的一位数仍然是1。

数学三位数乘两位数知识点

速度×时间=路程

单价×数量=总价

工作效率×工作时间=工作总量

路程÷时间=速度

总价÷单价=数量

工作总量÷工作时间=工作效率

路程÷速度=时间

总价÷数量=单价

工作总量÷工作效率=工作时间

积的变化规律:一个因数不变,另一个因数乘或除以几,积也乘或除以几(零除外)

一个因数乘几,另一个因数除以几,积不变(零除外)。

两位数乘三位数,积最多五位数,最少四位数。

估算原则:便于口算、接近准确数、能解决实际问题(估大或估小)

小学百分数知识点总结 篇3

基本概念与性质

分数:把单位“1”平均分成几份,表示这样的一份或几份的数。

分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

分数单位:把单位“1”平均分成几份,表示这样一份的数。

百分数:表示一个数是另一个数百分之几的数。

常用方法:

①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。

②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。

③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。

④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。

⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:A、分量发生变化,总量不变。B、总量发生变化,但其中有的分量不变。C、总量和分量都发生变化,但分量之间的差量不变化。

⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。

⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。

⑧浓度配比法:一般应用于总量和分量都发生变化的状况。

精选图文

221381
领取福利

微信扫码领取福利

微信扫码分享