欢迎访问AA范文大全网!

概率论与数理统计心得体会【汇总5篇】

风中飘雪 分享 时间: 加入收藏 我要投稿 点赞

本文共计18448个文字,预计阅读时间需要74分钟。

概率论与数理统计心得体会范文第1篇

关键词:概率论与数理统计 教学实验 SAS软件 揉合 数学建模

中图分类号:G642 文献标识码:A 文章编号:1674-098X(2015)09(a)-0101-02

概率论与数理统计是工科院校的重要课程,但是由于课程自身的特点决定了学生在学习过程中常常会感觉概念太抽象,理解起来相当费劲。如果不能很好地理解概念,那么后续学习就很可能会出现一系列的问题。大多数的时候,在处理习题以及在考试中就会出现很多不必要的错误,根源在于没有很好地理解概念,思维没有得到相应地拓展。教师在整个教学环节,包括课前备课中必须要思考的,包括如何安排教学,使得学生在学习过程中,能够愿意学习这门课程,能够接受该课程的理论体系。通过近十年来对概率论与数理统计课程的教学,笔者认为可以从以下几个方面来把握。

1 建立良好开端

概率论与数理统计作为一门数学学科,会让大多数学生在心理上产生莫名的抵触。在以前的教学过程中,遇到过一些学生,自己认为数学就是很难,很难,太抽象,从开始上课就觉得自己肯定学不好。很显然,这并不是一个好预兆。我们都知道,兴趣是最好的老师。一件事情难或者易,都是和做这件事情的人的主观意愿有很大关系。如果愿意去做,有兴趣,那么难题会变得简单。同样,如果不愿意去做,迫于外界压力不得不去做,即使是很简单的问题,也不见得就会得到圆满的解决。所以,作为任课教师,第一次课的首要任务不是开篇就开始教学内容,而是应该建立一个良好的开端,给学生一定的信息量,让学生觉得这门课程不错,挺有意思。那该怎么样上好第一次课。

任何一门学科都有经典的极具代表性的小典故。这些小典故,就像一盏盏小灯光,指引人们有足够的兴趣去探索更加光辉的世界。那概率论与数理统计的这个小灯光又在哪里呢?数学就是为解决实际问题而生的,自然也来源于生活,就像概率论与数理统计学科的诞生一样。简单来说,概率的起源――都是色子惹的“祸”。三四百年前的欧洲国家,贵族盛行赌博之风。利用色子赌博的方式可谓是五花八门。很自然,赌徒都希望自己在赌博中不输。由此产生了著名的德?梅尔问题。但是这些赌徒解决不了这些问题,重担最终落在数学家的身上。在帕斯卡、费尔马、惠更斯等数学巨匠的努力下,创立了早期的概率论。

此外,我们所熟知的圆周率,是精确计算圆周长、圆面积、球体积等的关键值。作为这个充满神奇的常用数,在现代计算机的飞速发展下,可以计算到小数点以后10万亿位。我们没有必要去深究那10万亿个数到底怎么来的,但是有一点应该确信,事物发展是从易到难的。我们也可以用我们所学概率论与数理统计的知识粗略算出其值。这是一种随机试验方法――蒙特卡洛方法。原理是:在直角坐标系下,有一个圆心在原点的单位圆,在第一象限内有一个正方形,其边长为1,且两直角边落在两坐标轴上。向此边长为1的正方形内随机投入块小石头,当足够大时,小石头会均匀分布在正方形中,落在1/4圆内的小石头个数记为,则可近似看成1/4单位圆面积。记投点坐标为,每个坐标是(0,1)内的随机数。每个落在1/4圆内即满足的概率为。

于是,可用随机投点法近似计算:。这样就可以计算出圆周率。如果想进一步得到精确值,可以加大随机投点的个数,只要其个数足够大,就可以得到更为精确的值。

通过此番介绍,可以很大程度上吸引学生愿意了解这门学科。这样就可以在一定程度上打消学生的畏难情绪,建立良好的开端。

2 开设教学实验

传统的数学教育属于知识传授型,较为重视课程的系统性、独立性,人为地割裂了数学理论和数学方法与现实世界的联系。对于概率论与数理统计的教学,可以适当增加一些多媒体课件的应用。数学课程的抽象性,导致很多教师认为不能用多媒体课件教学,因为学生跟不上教师的思维,而一味地看课件,不能很好地领会课程内容。凡事总有利弊。我个人认为,如果可以适当地应用多媒体课件,会在一定程度上帮助学生理解教学内容,而不是低头看一些复杂的定义、定理。作为理论性偏强的内容,教师可以自行调整,没有必要花费大量的时间板书此部分内容。教材上有的,直接可以放到多媒体课件里,重点是讲解含义以及应用。过多的板书定义、定理,也会影响到学生学习的信心和兴趣。在当前教学形势下,如果不借助计算机这一现代化的工具,将使得学生不了解,也不会使用数学软件,同时加重学生学习以及教师教学的负担。

除了课堂上恰当使用多媒体课件意外,还可以在完成课堂的理论教学以后,适当安排一定的学时给学生,让学生亲身体会一下,在借助现代化的计算机技术情况下,我们的概率论与数理统计课程可以如此不同。比如说:利用SAS软件计算正态分布、二项分布、指数分布等事件的概率。对于各种分布通过改变参数绘制图形,体现分布中参数的意义。通过实验,使学生更好地理解定义、定理。这样做,在现有学时紧张的情况下,不仅可以提高教学效果,更可以使学生的计算和应用能力得到提高。

3 揉合数学建模

数学学习贵在学以致用。在当前的教育背景下,对于数学这门学科的学习,从小学开始就仅仅体现在会做题,能考高分上。这当然可以作为对于知识学习的一个考量,但绝对不应该成为唯一的考量。纵然具有扎实的理论知识,若不知道、不能够在实际工作或是生活中解决问题,那就失去了学习知识的初衷。

在校大学生,都能走出校园,去到工厂、企业中帮助解决实际问题,事实上也不现实。我们需要做的是在学校既有的条件下,提供给学生更多更好地实战的机会,学以致用。我认为最好的办法就是鼓励学生参加全国大学生数学建模竞赛。作为一个全国性的赛事,很具有挑战性。参加过本赛事的同学,大多都认同此赛事对于他们把所学知识用于解决实际问题是一个很好的平台,对他们的综合能力有很大的提高。

纵观今年全国大学生数学建模竞赛的题目,很多时候都会牵涉到概率论与统计的内容。如:2010年储油罐的变位识别与罐容量标定问题,2011年交警巡逻服务台的设置和调度问题,2012年葡萄酒的评价,2013年车道被占用对城市道路通行能力的影响等问题都在一定程度上涉及到了概率论与数理统计的知识。因此,教师在课堂教学中对利用课程知识进行数学建模的思想加以渗透,探索一些具有现实意义、应用性强的实例,让学生分析、调查、研究,在探索过程中体会随机问题的魅力,培养学生运用概率论与数理统计知识分析和解决问题的能力。

当然,要参加全国大学生数学建模竞赛,必须具备一定的基础。基础从哪里来?在平时,在教师上课的时候加以灌输建模思想。有限的课时,显然不适合作诸如全国大学生数学建模竞赛那样复杂的题目,可以从小处入手,从生活中截取部分实例,帮助培养学生数学建模的思维方式。

实例:卖报人的烦恼。

问题简述:卖报人每天早晨购进报纸零售,晚上将没有卖掉的报纸退回,如何购进适量的报纸,使之即可以满足需求量,同时又可以最大程度地减少因为退回带来的损失?

问题分析:其实这就是一个关于怎么样使得获得利益最大化的问题,作为每一个生意人,都会遇到类似的问题。那么,看似简单的一个小问题,和概率论与数理统计知识又有什么关系呢?因为要考虑获得最大收益,显然与购进量和售出量有关系。而购进量是受需求量的影响,而需求又是随机的,故而要建立一个随机模型,也就是概率模型,是一类针对随机现象的模型。

问题解决:设报纸每份购进价为,零售价为,退回价为,显然有,因而每卖出一份报纸赚,退回一份赔,为了获得最大的收入,必须确定合适的购进量。假定卖报人按照自己以往的售卖经验已经基本掌握了需求量的随机规律,也即是每天报纸的需求量为的概率为是知道的。假如每天购进量为份,由于需求量随机,所以卖报人的收入也是随机的,因此应该以每天收入的数学期望为优化的目标函数。

利用概率知识,可以分析得到:购进量应满足:卖不完与卖完的概率之比恰好等于卖出一份赚的钱和退回一份赔的钱之比。显然,当卖报人与报社签订合同使卖报人每份赚钱与赔钱之比越大时,卖报人购进的量就应该越多。

利用概率论知识使问题得到了很好解决,所得到的结论和实际也是相符合的。

日常生活中经常会遇到排队等候服务的现象,如车站售票处乘客依次排队买票,医院里病人按序号等候就医,超市里收银台前顾客排队等候付款,空中飞机等候跑道降落等等。诸如此类问题,可归结为同一个随机问题:顾客到达的时刻和服务员进行服务的时间都是随机的,可用随机服务模型解决这一问题。

4 完善考核方式

考核是教学过程的重要环节,是考查学生学习情况,评估教学质量的手段。概率论与数理统计课程作为考试课程,不能一味采用期末闭卷卷面成绩占总评的80%,平时成绩占总评的20%的考查机制。总评成绩应该更加细化,可分为:平时成绩占60%,期末闭卷卷面成绩占40%,其中平时成绩的60%可划分为出勤占10%,课堂表现占15%,课后作业占10%,数学建模占25%。这样既可调动学生积极性,又能体现学生对概率论与数理统计知识的应用能力。只有在这样的考核机制下,才更有利于学生实际应用能力的培养。

总之,在概率论与数理统计的教学中,不是仅仅是让学生会做几道概率论与数理统计的题目,而是要想办法引导学生在学习概率论与数理统计课程的过程中拓展学生思维,深刻体会其实际应用价值,逐步提高分析、解决问题的能力。通过教师的潜心培养,学生所具备的综合素质必将在学生后续的学习、工作以及以后的生活中发挥至关重要的作用。

参考文献

[1] 姜启源.数学模型[M].北京:高等教育出版社,1993.

[2] 肖鹏,杜燕飞.概率论与数理统计教学改革的几点思考[J].数学教学研究,2009,28(1):60-61.

[3] 侯丹.数学建模思想融入概率论与数理统计的研究[J].高师理科学刊,2013,33(3):66-69.

[4] 国忠金,尹逊汝,李淑珍.数学建模思想在概率论与数理统计课程教学中的渗透与应用[J].泰山学院学报,2014,36(6):134-137.

[5] 姚君,苑延华.概率论与数理统计教学中数学建模思想的培养[J].高师理科学刊,2012,32(3):95-97.

概率论与数理统计心得体会范文第2篇

关键词:概率论与数理统计;创新能力;教学改革

作者简介:牛银菊(1965-),女,甘肃甘谷人,东莞理工学院计算机学院,副教授。(广东 东莞 523808)

基金项目:本文系东莞理工学院教育教学改革与研究重点资助项目(项目编号:2012-4)的研究成果。

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)04-0073-02

“概率论与数理统计”是工科专业学生的基础必修课程,在各个行业用处很广,但在实际的教学中仍存在一些问题。例如,教学内容上没有足够重视理论在工程应用中的作用;教学手段和教学方法单一,基本上按照教材、大纲采用注入式教学;教学效果和侧重点上重视计算方法,轻视数学概念、思想方法,结合实际领域不广泛,导致学生在实际问题中无从下手。[1,2]针对以上不足,下面以培养学生的创新能力为目的,从教学内容的调整、教学方法的改革以及教学管理措施的完善等三方面谈谈自己对“概率论与数理统计”教学的一些见解,以待与同仁商榷。

一、教学内容的调整

1.教材建设

“概率论与数理统计”是应用性非常广泛的学科,若沿用以前的教学大纲与教材,就会束缚教师的教学过程及教学思想,亦会缺乏时代性与先进性。为适应社会发展与科学进步,培养出满足社会需求的合格型人才,张忠志教授等根据本校学生的实际情况和课时数,编写了适合本校工科各专业的《概率论与数理统计》教材。[3]该教材以较多的实例引出“概率论与数理统计”的基本概念和公式,揭示其直观背景和实际意义,减少了一些烦琐的定理证明和公式推倒,使学生易学好懂,该教材在东莞理工学院2009级、2010级连续应用两年,得到了同行的认可。

2.侧重点调整

问卷调查表明:概率论部分的有关计算,中学已作为掌握内容讲过。由此可见,这部分内容从课时数及选用上需进行调整,不宜讲得过细、过透,要略讲,否则不仅造成内容的重复,使学生失去新鲜感,从而丧失对该课程学习的兴趣,更谈不上对学生创新能力的培养。而分布函数、概率密度函数、数理统计的概念等均为新内容,多数学生接受起来较慢,这无疑需要教师寻找解决难点的突破口。下面以离散型随机变量概率分布函数的求法为例,予以说明。

例:将一个质地均匀的骰子投掷一次,用X表示子朝上的点数,试写出X的分布函数。

解:第一步,让学生求出随机变量X的取值及取值的概率,见表1。这一点很简单,可引导学生自己完成。

第二步,具体求出分布函数是这道题的难点,只要紧扣对分布函数定义的分解,并用语言解释去完善该定义,学生就会很方便地求出F(X)。笔者是这样讲解的:先让学生明确函数的定义域是整个数轴,它被随机变量X所取的值分成7部分,相应的就是分段函数,然后解释分布函数定义的表达式,即表示,随机变量取小于等于x的概率,就是函数在小于等于x这个区间内、自变量x对应的函数值。如,求时函数对应的函数值,只需求出随机变量取值时的概率0(即时,)。同理,可以求出其他各段上对应的值。

对于概率论部分定理的证明,只需介绍思路及所解决的问题,不需写出详细的证明过程,否则会使本来抽象的内容更加抽象,增加学生对这门课程学习的恐惧心和厌恶感。

二、教学方法的改革

1.通过直观感受,激发学生的学习兴趣

“概率论与数理统计”作为一门应用数学课程是非常重要的,凡是有数据处理的地方,都离不开它,尤其在质量管理、计量经济学、保险数学等方面。为了让学生直观感受其重要性,可通过对现实生活中典型问题,如炒股、买彩票是冒风险的事情,人们自然要关心大量的投资是否有利可图、怎样考虑并解决这个问题、怎样估计出现各种不幸事故与自然灾害的可能性等问题,又如在桥牌活动中,经常需要判断某种花色在对方手中的分配等等。通过对类似这样问题解决思路的探讨,得出“从某种意义上讲,这类问题的解决都要用到概率论与数理统计的知识”的结论,让学生在寻找答案过程中既不觉得枯燥,又能激发他们学习的兴趣,将“学以致用”的原则真正体现在教学过程中,真正实现对传统教学方法的改革。

2.结合统计工具,强化与专业相结合的应用

众所周知,数理统计已渗透于工业统计、水文统计、统计物理学等许多领域,如气象预报、产量预报、石油勘探开发、可靠性工程等方面都要用到概率统计的有关知识。为了满足不同专业对“概率论与数理统计”知识的需求,教师应根据学科之间互相依赖、互相渗透、互相促进的原则,在精通数学知识的基础上,针对不同专业的典型问题,触类旁通,开拓思路,注意教学问题与专业应用的转化,达到活学活用的目的,从而提高学生的学习积极性,培养学生的创新能力。例如,对应用化学专业的学生可以提这样的问题:你们做实验,需要花费好多时间,时间长了就会引起厌烦,是否可以测定由于对工作的厌烦影响工作效率?解决这个问题只需测量做这个实验的时间,得出一些数据,依据这些数据,通过假设检验即可得出结论。对工程管理专业的学生可以提这样的问题:在工程测量和工程预算等实际工作中,都会遇到风险问题,对风险系统作定量分析,如何准确地估测风险事故的特征参数,最终获得处理风险事故的最优方案?要解决这些问题,就会遇到大量数据的处理,若能结合统计工具,从各种角度用各种方式去表达一个问题,总结一题多解的方法,通过比较选择最优的处理方法,这样做不仅可以使研究的问题简单化,增加课堂容量,提高课堂教学效率,更能调动学生学习的主动性,提高他们解决实际问题的能力。下面以假设检验——t检验为例,予以说明。

例:某车间加工一种钢板,要求厚度均值为13mm,现从某一天生产的钢板中随机抽取26片,测得厚度如下(单位:mm):13.7、14.5、14、12、14.2、12.9、14.1、13.5、14.4、15、13.7、13.1、12.9、14、13.8、14.2、13.6、15.0、12.8、12.7、13.5、15.2、13.4、12.8、14.3、13.6。问今天生产的钢板厚度的均值与规定的质量分布要求有无显著差异()。

传统解法:(1)计算可得;(2)查表可得,s=0.78;(3)计算得均值μ的置信水平为0.95的置信区间为(0.4110,1.0428);(4)计算得t统计量的值,因4.739没有落在置信区间(0.4110,1.0428)内,则可断定今天生产的钢板厚度不符合质量分布要求。该方法先要判断所选统计量的种类,记住相应统计量及置信区间的公式,会查分布表,准确计算公式中庞大数字的值,这样将大量时间耗费在死记硬背和初等计算上,且有一个环节出问题,就不能得出准确的结论。

统计工具:若利用统计软件SPSS,只需掌握这种软件的使用方法即可。对于上例,只需在菜单中输入样本容量26、总体均值13、置信度0.95等数据,点击“OK”,便可输出t统计量的值4.739、置信水平为95%的置信区间(0.4110,1.0428)。该方法不需要处理庞大的数据,根据输出的值就可判断t统计量是否包括在置信区间内,进而判定今天生产的钢板厚度是否符合质量分布的要求。

总之,如果能根据工科学生的培养目标和专业特点,把相关统计工具应用到讲授“概率论与数理统计”的教学中,可以使内容更生动、更形象、更具有吸引力,从而增强教学内容的趣味性,调动学生学习的积极性。同时,如果学生能结合自己专业的特点把统计学、算法、软件结合起来解决专业问题,可以使学生学以致用,培养他们创新能力。

3.重视切入点的选择,培养学生的应用能力

工科“概率论与数理统计”的教学,教师应选择合适的切入点,具体问题具体分析,从中找出规律性的东西。注意前后知识的联系,把新问题转化为老问题加以解决,让学生掌握解决处理实际问题的一般方法,逐步提高他们分析问题、解决问题的能力。

例如,在介绍点估计这个概念时,先让学生明确点估计是数理统计中几类常见的估计问题之一,所研究的总体服从的分布已知,但总体服从的分布中有未知的参数,然后这个未知参数的确定,是通过抽取样本、用样本的观测值来估计的,根据这一切入点可得出点估计的概念。对假设检验讲解,可从“是否可以认为在两种不同的环境中长大的孩子,其智商得分是不一样的”这一大家关心的问题出发,让学生分组讨论,在答案不一致的情况下,引出假设检验这个课题,以达到培养学生基本数学素养的目的。为了让学生掌握假设检验的思想及方法,可通过“双胞胎分开抚养智商测试”实验的讲解,得出两种环境中长大的孩子智商没有显著差异的结论。在讲解过程中,需抓住“小概率事件在一次实验中几乎不能发生”作为切入点,按照小概率事件与反证法相结合的基本思想,让学生明确假设检验的思路。假设检验的方法可概括为:先提出假设,然后观察会出现什么结果,根据小概率事件在一次试验中几乎不会发生进行推断,如果导致了一个不合理现象,就表明原假设不成立,否则假设成立。为了巩固和加深学生对基本概念、基本理论和常用统计方法的具体应用,可结合工程实例布置适量的具有代表性的练习,以拓展学生的知识面,培养学生的应用能力。

三、教学管理措施的完善

“概率论与数理统计”课程是工科专业的基础必修课,本校的考试形式是期末统考,阅卷方式是流水批阅,成绩总评以期末考试为主,适当考虑平时成绩。学生成绩若不合格,可以在下学期参加补考或毕业前的清考。为了加强对学生的管理,我校从2010年开始取消了补考和清考,采用重修的方式,为避免部分学生因一次考试失误而不能反映其真实水平的现象发生,可对学生的课堂管理方式进行相应的改革。例如,每次上完课后可给学生布置些实际应用的疑难问题,要求学生找出其突破口,在下次课时老师通过提问的方式进行抽查,这样不仅对学生进行了考勤,而且使学生在完成教师布置的任务中体现出了他们的价值,从而将被动上课变成自觉行动,更重要的是可避免学生的逃学现象;另外,可在课程结束时,要求学生根据自己的情况,以小论文或总结报告的形式谈谈应用所学知识解决专业某一问题的思路,为寻求“概率论与数理统计”与工科专业知识的结合点打好基础。对完成上述要求的同学,可以将平时成绩给到满分30分,并直接计入总评,这样不仅达到了督促学生严守校规的目的,还为学生取得优异成绩提供保障,从而减轻学生因考试而产生的心理和精神负担。

四、结束语

评教结果表明:大多数学生认同教师的教学理念,认为本文提出的教学改革措施可以激发他们学习该课程的兴趣、调动他们学习的主动性、培养他们的创造性思维能力以及提高他们的动手能力,同时可为专业课的学习打下坚实的基础。学生的肯定无疑为教师进一步进行教学改革增加了信心。

参考文献:

[1]袁璐.对高师概率统计课程教改的探讨[J].山东师范大学学报(自然科学版),2004,(4).

概率论与数理统计心得体会范文第3篇

关键词:概率统计 教学方法 实际应用

中图分类号:021 文献标识码:A 文章编号:1007-3973(2010)011-155-02

大学教育的主要任务是培养高素质具有创新意识和能力的优秀人才,大学数学教学在完成这个任务中起着不可忽视的作用,大学数学教学的作用是灌输数学知识,提高数学素养,培养应用数学的能力,目标是获得数学基础知识,学会思维的方法,知道把握问题的全局,了解知识整体的构架,掌握应用的基本思路。工科数学教学的主要目的是培养学生用数学思想和工具去解决实际问题的能力,为学习其他课程打好基础,因此下面仅对工科数学中概率统计课程的教学进行探讨研究。

1 工科概率统计课程教学的现状与存在不足

掌握和应用数学的水平己成为民族文化素质、社会进步和发展的重要标志,概率统计是应用性和实践性很强的一门课程,但是,目前课程的教学方法和教学内容上在体现实际应用方面还存在着各种问题:教学手段上基本是采用注入式教学,按照教栩、大纲讲得过细、过透,生怕学生听不懂,有时把概念、定理讲得过神秘、复杂;教学内容上看,经典多且重,现在少而轻,概率重统计轻;从教学效果和侧重点看重视计算方法,轻视数学概念、思想方法,不注重应用能力的训练培养,结合实际领域不广泛,导致学生在实际问题中无从下手。概率统计作为大学数学的重要课程,在教学方法上没有充分利用当代的重要工具――计算机,教学内容上没有足够重视理论与实际相结合和在社会应用中的作用,这些明显不适应现代及末来的需求,所以对概率统计课程教学方法的改革是当前急待解决的问题之一。

2 工科概率统计课程教学改进的设想

概率统计是大学数学的主要课程,特点是:联系生活、理论深刻、解题方法独特且应用十分广泛。在几乎所有的科学领域中都可以应用概率统计的方法解决实际问题,为此笔者认为概率统计在教学改革上应强调以下几点:

2.1 明确教学思路及教学方法

在概率统计的教学中关键要明确学习的主体,要授之以渔,而非授之以鱼,要教会学生学习的方法,主要让学生掌握概率统计的思想和方法,根据课程紧密联系实际的特点突出应用性,培养学生用数学思想和方法解决实际问题的能力,使学生充分认清概率统计在社会实践中的重要性,才会下定决心学好这门课程。所以,在概率统计的教学过程中,可介绍著名数学家关于概率统计这门课程的评价,如“概率论已成为全部科学之基石之一,而它的女儿――统计科学已进入人类全部的领域之中”,“人生的最重要的问题大部分实际上只是概率论的问题”(拉普拉斯)等。

概率统计与其它大学数学在教学方法上应有着很大的不同,后者较为注重的是培养学生的抽象思维能力、计算能力,而概率统计的教学不仅培养学生的数学基础能力,重要的是使学生理解哲学背景,即统计思想,我国著名统计学家、中科院院士陈希孺先生曾多次指出统计思想的重要性,“统计思想是概率统计的灵魂,离开了统计思想的讲授,概率统计的教学就会成为无本之木,无源之水,就会变成高等数学的简单应用。”可在教学中结合本课程与生活实际联系密切、应用广泛的特点,用生动的实例或背景激发学生的学习热情,如在讲授古典概型、伯努利概型时一定要结合其背景,注意条件的判定,否则学生会死记硬背。对于各种分布的讲授要结合具体应用模型,如指数分布主要用于描述“电子元件的寿命”,“等待时间”等,这样讲解有利于提高学生的学习兴趣,加深学生对所学知识的印象。

2.2 强化基本概念的教学

概念是教学展开的基础,数学概念是抽象上的抽象,先前的概念往往是后继概念的基础,从而形成数学概念的系统。能否学好数学,是否掌握好概念是关键,学好数学概念是学好数学的前提,是培养学生逻辑思维能力和分析问题、解决问题的重要依据。要使学生准确、深刻地理解基本概念,因为数学概念往往互相关联,教师在处理教材内容时,要从整体上把握教材的知识体系,综观全局,引导学生掌握概念之间的纵横联系,在概念的统帅作用下,觉察出已学知识之间的联系。

如样本空间,一般在教学中往往忽略这个概念,但在后续课程及实际应用中都有重要作用,选择不同会得到不同的解题方法,选择不当会使问题复杂化。还有数学期望,方差,统计量等这些基本概念一定要讲清楚。

2.3 突出抓主线化繁为简的原则

对工科专业的学生,并不需要详细掌握定理的证明和计算过程,在概率统计的教学中只需要求学生掌握概率统计的主要概念、基本定理以及常用的数理统计的思想和方法即可,应将主要精力放在培养学生运用概率论思想和数理统计方法解决实际问题的能力上。

因此课程的教学原则是,抓住主线,即抓主要概念、理论、思想和方法,讲清楚最简单、最基本的知识和原理,说明知识扩展延伸的思路和方法,对复杂的定理证明和繁琐的计算过程可不讲或简单介绍。如概率统计的精华是分布函数、数字特征、统计特征、统计量,这些一定要讲透。

2.4 重视数理统计教学

概率统计课程的中心任务是揭示随即现象的统计规律性及内在联系。数理统计是概率统汁课程中的重要部分,学生对这部分内容的掌握直接影响解决实际问题的能力。因此,如何增强工科学生对数理统计思想方法的理解与应用已成为教学的一个重要的课题。传统的教学中只重视公式的推导、计算能力的训练,忽略了对统计思想的讲授,很多同学学完概率统计课程只知道照书上公式计算而不知道所以然,更谈不上统计方法的应用了。

统计学是讨论不确切推理的科学和艺术,逻辑思维的形式是演绎和归纳,归纳方法作为科学方法的基础,如效能与毁伤的问题,必须拙样:对于教科书中出现的大量的统计计算均可由软件实现,实际工作中需要统计处理的数据也大多由软件完成,因此,如何培养学生用数理统计思想建模,相应地成了现代数理统计教学工作的重点。在授课过程中,若条件允许,可以适当安排一些统汁软件的上机实验以帮助学生理解和使用统计软件。

3 工科概率统计教学中一些具体方法的探讨

如何使学生在课堂学习中取得较好的学习效果是许多教育工作者探索的一个重大课题,应用性较强的概率统计课程的教学是不能采用传统的教学模式的,通过多年的教学实践笔者认为可从以下几个方面进行尝试:

3.1 了解知识的来龙去脉

来龙,知识的来源,首先要求教师学习数学史,特别是概率统计发展史,比如,在介绍贝努里大数定律时,可顺便指出它建立在1731年,是概率论的第l篇论文。介绍数理统计知识时可指出数理统计学来源于实践,而它的发展又是为了进一步

指导人们的实践活动。去脉,知识的应用,教师要学习现代科技和开展科研,对自然界的深刻研究是数学最富饶的源泉,教学中还要培养教师和学生如何问问题,教师的问题应有诱导性,启发性,发散性,应倡导学生不拘一格大胆、创新提出各种问题和殴想,如期望与均值、方差与波动、统计特征与个别事件分别有什么关系等。

3.2 注意概念的直观含义或实际意义

数学是从人类生活中长大发展的,数学是一个整体,“数”、“形”是互通的,教学中充分利用概念的直观含义或实际意义,使得不容易理解的概念易于理解和掌握,比如引入分布函数的概念时可这样处理,离散型随机变量的统计特征可以用分布律描述,非离散型的该如何描述?问题1:彩电的寿命是一随机变量,对消费者来说,{=8年},还是{=8年零1天)?问题2:人的身高是一随机变量,你的身高是1.70米还是1.701米?实际生活中我们关心的是彩电的寿命是几年,你的身高是哪个范围,用随机变量描述的话,落在某一区间的概率是多少,由此引入分布函数的概念就比较容易理解了。

3.3 重视对思想方法的指导

数理统计的核心内容是参数估计、假设检验,对这一部分内容讲清原理比教会计算更重要。在一定程度上决定了学生日后对于统计思想使用的正确与否。如极大似然估计是建立在“极大似然原理”之上的,在授课过程中一定要讲清它的原理,而不是仅仅告诉学生怎样去做题;对假设检验则要讲清两类错误(风险)及“小概率原理”,在这基础上再讲假设检验会理解得更好。

3.4 强化应用强化与专业相结合的应用

传统的教学方法往往只重视数学理论上的连续性,不注重在实际中的应用性和可操作性。概率统计课程恰恰是一门应用性都很强的学科,所以教学改革的重点应充分体现“学以致用”的原则。可列举一些实例来说明学习、掌握概率统计知识和方法去解决日常生活中的问题是何等重要。如,生活中人们经常要在不确定的情况下做出决定,像天气预报、炒股、买彩票以致赌博等,也体现了数理统计的思想和方法都是长期实践的结果。

概率论与数理统计心得体会范文第4篇

关键词:课堂教学;概率论与数理统计;应用能力;教学模式? ?

概率与数理统计是实际应用性很强的一门数学学科,它在经济管理、金融投资、保险精算、企业管理、投入产出分析、经济预测等众多经济领域都有广泛的应用。概率与数理统计是高等院校财经类专业的公共基础课,它既有理论又有实践,既讲方法又讲动手能力。然而,在该课程的具体教学过程中,由于其思维方式与以往数学课程不同、概念难以理解、习题比较难做、方法不宜掌握且涉及数学基础知识广等特点,许多学生难以掌握其内容与方法,面对实际问题时更是无所适从,尤其是财经类专业学生,高等数学的底子相对薄弱,且不同生源的学生数理基础有较大的差异,因此,概率统计成为一部分学生的学习障碍。如何根据学生的数学基础调整教学方法,以适应学生基础,培养其能力,并与其后续课程及专业应用结合,便成为任课教师面临的首要任务。作为我校教学改革的一个重点课题,在近几年的教学实践中,我们结合该课程的特点及培养目标,对课程教学进行了改革和探讨,做了一些尝试性的工作,取得了较好的成效。?

1 与实际结合,激发学生对概率统计课程的兴趣?

概率论与数理统计从内容到方法与以往的数学课程都有本质的不同,因此其基本概念的引入就显得更为重要。为了激发学生的兴趣,在教学中,可结合教材插入一些概率论与数理统计发展史的内容或背景资料。如概率论的直观背景是充满机遇性的赌博,其最初用到的数学工具也仅是排列组合,它提供了一个比较简单而非常典型(等可能性、有限性)的随机模型,即古典概型;在介绍大数定律与中心极限定理时可插入贝努里的《推测术》以及拉普拉斯将概率论应用于天文学的研究,既拓广了学生的视野,又激发了学生的兴趣,缓解了学生对于一个全新的概念与理论的恐惧,有助于学生对基本概念和理论的理解。此外,还可以适当地作一些小试验,以使概念形象化,如在引入条件概率前,首先计算著名的“生日问题”,从中可以看到:每四十人中至少有两人生日相同的概率为 0.882,然后在各班学生中当场调查学生的生日,查找与前述结论不吻合的原因,引入条件概率的概念,有了前面的感性认识后学生就比较主动地去接受这个概念了。?

在概率统计中,众多的概率模型让学生望而生威,学生常常记不住公式,更不会应用。而概率统计又是数学中与现实世界联系最紧密、应用最广泛的学科之一。不少概念和模型都是实际问题的抽象,因此,在课堂教学中,必须坚持理论联系实际的原则来开展,将概念和模型再回归到实际背景。例如:二项分布的直观背景为 n重贝努里试验,由此直观再利用概率与频率的关系,我们易知二项分布的最可能值及数学期望等,这样易于学生理解,更重要的是让其看到如何从实际问题抽象出概念和模型,引导学生领悟事物内部联系的直觉思维。同时在介绍各种分布模型时可以有针对性地引入一些实际问题,向学生展示本课程在工农业、经济管理、医药、教育等领域中的应用,突出概率统计与社会的紧密联系。如将二项分布与新药的有效率、射击命中、机器故障等问题结合起来讲;将正态分布与学生考试成绩、产品寿命、测量误差等问题结合起来讲;将指数分布与元件寿命、放射性粒子等问题结合起来讲,使学生能在讨论实际问题的解决过程中提高兴趣,理解各数学模型,并初步了解利用概率论解决实际问题的一些方法。?

2 运用案例教学法,培养学生分析问题和解决问题的能力?

案例教学法是把案例作为一种教学工具,把学生引导到实际问题中去,通过分析与互相讨论,调动学生的主动性和积极性,并提出解决问题的基本方法和途径的一种教学方法。它是连接理论与实践的桥梁。我们结合概率与数理统计应用性较强的特点,在课堂教学中,注意收集经济生活中的实例,并根据各章节的内容选择适当的案例服务于教学,利用多媒设备及真实材料再现实际经济活动,将理论教学与实际案例有机的结合起来,使得课堂讲解生动清晰,收到了良好的教学效果。案例教学法不仅可以将理论与实际紧密联系起来,使学生在课堂上就能接触到大量的实际问题,而且对提高学生综合分析和解决实际问题的能力大有帮助。通过案例教学可以促进学生全面看问题,从数量的角度分析事物的变化规律,使概率与数理统计的思想和方法在现实经济生活中得到更好的应用,发挥其应有的作用。?

在介绍分布函数的概念时,我们首先给出一组成年女子的身高数据,要学生找出规律,学生很快就由前面所学的离散型随机变量的分布知识得到分组资料,然后引导他们计算累积频率,描出图形,并及时抽象出分布函数的概念。紧接着仍以此为例,进一步分析:身高本是连续型随机变量,可是当我们把它们分组后,统计每组的频数和频率时却是用离散型随机变量的研究方法,如果在每一组中取一个代表值后,它其实就是离散型的,所以在研究连续型随机变量的概率分布时,我们可以用离散化的方法,反过来离散型随机变量的分布在一定的条件下又以连续型分布为极限,服装的型号、鞋子的尺码等问题就成为我们理解“离散”和“连续”两个对立概念关系的范例,其中体现了对立统一的哲学内涵,而分布函数正是这种哲学统一的数学表现形式。尽管在这里花费了一些时间,但是当学生理解了这些概念及其关系之后,随后的许多概念和内容都可以很轻松地掌握,而且使学生能够对数学概念有更深层次上的理解和感悟,同时也调动了学生的学习积极性和主动性,培养了他们再学习的能力。?

3 运用讨论式教学法,增强学生积极向上的参与和竞争意识?

讨论课是由师生共同完成教学任务的一种教学形式,是在课堂教学的平等讨论中进行的,它打破了老师满堂灌的传统教学模式。师生互相讨论与问答,甚至可以提供机会让学生走上讲台自己讲述。如,在讲授区间估计方法时,就单双边估计问题我们安排了一次讨论课,引导学生各抒己见,鼓励学生大胆的发表意见,提出质疑,进行自由辩论。通过问答与辩驳,使学生开动脑筋,积极思考,激发了学生学习热情及科研兴趣,培养了学生综合分析能力与口头表达能力,增强了学生主动参与课堂教学的意识。学生的创新研究能力得到了充分的体现。这种教学模式是教与学两方面的双向互动过程,教师与学生的经常性的交流促使教师不断学习,更新知识,提高讲课技能,同时也调动了学生学习的积极性,增进师生之间的思想与情感的沟通,提高了教学效果。教学相长,相得益彰。?

保险是最早运用概率论的学科之一,也是我们日常谈论的一个热门话题。因此,在介绍二项分布时,例如一家保险公司有1000人参保,每人、每年12元保险费,一年内一人死亡的概率为0.006。死亡时,其家属可向保险公司领得1000元,问:①保险公司亏本的概率为多大?②保险公司一年利润不少于40000元、60000元、80000元的概率各为多少? 保险这一类型题目的引入,通过讨论课使学生对概率在经济中的应用有了初步的了解。?

4 运用多媒体教学手段,提高课堂教学效率?

传统上一本教材、一支粉笔、一块黑板从事数学教学的情景在信息社会里应有所改变,计算机对数学教育的渗透与联系日益紧密,特别是概率论与数理统计课,它是研究随机现象统计规律性的一门学科,而要想获得随机现象的统计规律性,就必须进行大量重复试验,这在有限的课堂时间内是难以实现的,传统教学内容的深度与广度都无法满足实际应用的需要。在教学中我们可以采用了多媒体辅助手段,通过计算机图形显示、动画模拟、数值计算及文字说明等,形成了一个全新的图文并茂、声像结合、数形结合的生动直观的教学环境,从而大大增加了教学信息量,以提高学习效率,并有效地刺激学生的形象思维。另外,利用多媒体对随机试验的动态过程进行了演示和模拟,如:全概率公式应用演示、正态分布、随机变量函数的分布、数学期望的统计意义、二维正态分布、中心极限定理的直观演示实验等,再现抽象理论的研究过程,能加深学生对理论的理解及方法的运用。让学生在获得理论知识的过程中还能体会到现代信息技术的魅力,达到了传统教学无法实现的教学效果。?

5 改革考试方式和内容,合理评定学生成绩?

应试教育向素质教育的转变,是我国教育改革的基本目标。财经类专业的概率与数理统计教学,除了在教学方法上应深入改革外,在考试环节上也需要进行改革。?

考试是教学过程中的一个重要环节,是检验学生学习情况,评估教学质量的手段。对于数学基础课程概率与数理统计的考试,多年以来一直沿用闭卷笔试的方式。这种考试方式对于保证教学质量,维持正常的教学秩序起到了一定的作用,但也存在着缺陷,离考试内容和方式应更加适应素质教育,特别是应有利于学生的创造能力的培养之目的相差甚远。在过去的概率与数理统计教学中,基本运算能力被认为是首要的培养目标,教科书中的各种例题主要是向学生展示如何运用公式进行计算,各类辅导书中充斥着五花八门的计算技巧。从而导致了学生在学习概率与数理统计课程的过程中,为应付考试搞题海战术,把精力过多的花在了概念、公式的死记硬背上。这与财经类培养跨世纪高素质的经济管理人才是格格不入的。为此,我们对概率与数理统计课程考试进行了改革,主要包括两个方面:一是考试内容与要求不仅体现出概率与数理统计课程的基本知识和基本运算以及推理能力,还注重了学生各种能力的考查,尤其是创新能力。二是考试模式不具一格,除了普遍采用的闭卷考试外,还在教学中用互动方式进行考核,采取灵活多样的考核形式。学生成绩的测评根据学生参与教学活动的程度、学习过程中掌握程度和卷面考试成绩等综合评定。这样,可以引导学生在学好基础知识的基础上,注重技能训练与能力培养。?

实践表明,运用教改实践创新的教学模式,可以使原本抽象、枯燥难懂的数学理论变得有血有肉、有滋有味,可以激发学生的求知欲望,提高学生对课程的学习兴趣。在概率统计的教学模式上,我们尽管做了一些探讨,但这仍是一个需要继续付出努力的研究课题,也希望与更多的同行进行交流,以提高教学水平。?

参考文献?

[1]?陈善林,张浙.统计发展史[M].上海:立信会计图书用品社,1987:119-151.?

[2]?姜启源,谢金星,叶俊.数学模型(第三版)[M].北京:高等教育出版社,2003.?

[3]?肖柏荣.数学教学艺术概论[M].合肥:安徽教育出版社,1996.?

概率论与数理统计心得体会范文第5篇

关键词:公共数学;分层教学;概率论与数理统计

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)30-0096-02

《概率论与数理统计》是高等学校的重要基础理论课程之一,是许多本科专业主要的一门公共数学课,在整个公共数学教学中占据很重要的基础地位,是核心基础课,也是进一步研究其他理工科专业课的出发点和基石。因此,如何积极深化教学改革,探索有效途径运用多媒体及网络教学,使学生易于接受、掌握精髓、学以致用是我们必须面对的重要课题。改革公共数学的教学方法、教学手段,提高教学质量是长期值得探索的问题。

由于高校中不同的专业对数学教学内容的要求不同,为了能更好地发挥教师的教学作用以及调动学生的学习积极性,因此,探讨《概率论与数理统计》的分层教学实施方案是一个比较急迫的事情。本文以西北民族大学公共数学《概率论与数理统计》的设置现状为依据,探讨了公共数学《概率论与数理统计》分层教学方案,其核心内容包括分层教学、分层考核、教学监控与反馈。

一、分层依据

西北民族大学的经管学院、电气工程学院、化工学院、生命科学与工程学院、土木工程学院、数学与计算机科学学院的近二十个专业中均开设有《概率论与数理统计》课。但在具体教学过程中,《概率论与数理统计》课程的教学效果却不尽如人意,出现学生过关率不高、两级分化严重、课时紧张等诸多问题。

由西北民族大学公共数学现状及存在的问题可看到,西北民族大学开设《概率论与数理统计》课的专业比较复杂,所以有必要实施分层教学。分层教学就是依据对《概率论与数理统计》课程的不同专业要求,将各专业划分为不同的教学层次,每个教学层次的教学内容与教学要求都不尽相同。

在详尽分析各专业开课现状基础,根据开课周学时、前驱课程高等数学的开课情况,以及专业特点,公共《概率论与数理统计》可按照五个教学层次进行教学。

第一教学层次包括电气工程学院的物理学(藏汉双语)专业,现代教育技术学院的应用心理学专业;第二教学层次包括电气工程学院的电气工程及其自动化、电子信息工程、自动化、通信工程专业,土木工程学院的土木工程专业,生命科学与工程学院的食品科学与工程专业;第三教学层次包括管理学院的工商管理、公共事业管理、会计学、旅游管理专业,经济学院的国际贸易、金融学、经济学专业,现代教育技术学院的教育技术学专业;第四教学层次包括数学与计算机科学学院的计算机科学与技术、软件工程专业;第五教学层次包括民族学与社会学学院的社会工作、社会学专业。

二、分层教学内容

各教学层次对《概率论与数理统计》课程的基本内容有所取舍。由于不是数学专业,所以所有教学层次都不要求讲授概率极限理论。

第一、二层次由于只有周2课时,总学时比较紧张,所以只要求讲授概率论部分,不要求讲授数理统计部分。第一层次中应用心理学专业的《高等数学》课程没有开设二重积分,所以不要求讲授二维连续型随机变量,物理学(藏汉双语)专业由于其专业特点也归入第一层次。

第三、四层次为周3课时,总学时足够讲授数理统计部分,同样由于第三层次中的专业没有学重积分,所以也不要求讲授二维连续型随机变量。

第五层次中,由社会工作专业和社会学专业的专业特点,其后续课程大量用到回归分析的知识,并且总课时也比较充足,因此不仅要求讲授概率论部分和数理统计部分,也要求讲授回归分析。

三、教材和教学参考资料的建设

教材是师生进行教学活动的基本依据,是教学内容和教学方法的知识载体,也是实现课程教学目标、实施课堂教学的重要资源。教材不能是一成不变的,可根据实际情况结合时代特点进行更换,因此,在教学过程中,要注重教材和教参资料的建设。公共数学《概率论与数理统计》的教材可按如下方案进行建设。

公共数学《概率论与数理统计》的教材必须由公共数学教研室指定,可由任课教师推荐,经公共数学教研室组织教师讨论通过,报学院批准,再报送教务处备案才能使用。

原则上教材应选用高等教育出版社和科学出版社等A类出版社出版的教材。选用的教材,一方面要能满足各教学层次的教学要求,与教学大纲相匹配,另一方面要相对统一,以便能统一管理,特别是可以为统一考试、建立题库打好基础。

在本校经过多次使用、多次调整的讲义应该更能体现本校学生情况,更能满足学生的需求,因此,任课教师在授课过程中要注意积累概率论与数理统计讲义,在条件适当情况可将讲义编为教材出版。

四、课程考核方案

公共课《概率论与数理统计》的课程考核比例为平时占20%,期中占20%,期末占60%,平时考核方式为考勤、作业,期中考核方式为测验,期末考核方式为闭卷考试。

期末考试也分层考核,根据教学层次、开课学期、专业特点将各专业分为五个考核层次。各层次考查要点及试卷生成方式按如下方式执行,其中:

第一考核层次包括电气工程学院的物理学(藏汉双语)专业,由授课教师单独出卷,考试内容由任课教师视实际情况而定;第二考核层次包括现代教育技术学院的应用心理学专业,电气工程学院的电气工程及其自动化、自动化、电子信息工程、通信工程专业,生命科学与工程学院的食品科学与工程专业,土木工程学院的土木工程专业,试卷采用“公共概率周2题库(心理/电气/食品/土木)”由计算机组卷,考试内容依据第一教学层次的教学内容由指定任课教师给出组卷方案;第三考核层次包括管理学院的工商管理、公共事业管理、会计学、旅游管理专业,经济学院的国际贸易、金融学、经济学专业,现代教育技术学院的教育技术学专业,试卷采用“公共概率周3题库1(管理/经济/教育技术)”由计算机组卷,考试内容依据第三教学层次的教学内容由指定任课教师给出组卷方案;第四考核层次包括数学与计算机科学学院的计算机科学与技术、软件工程专业,试卷采用“公共概率周3题库2(计算机/软件)”由计算机组卷,考试内容依据第四教学层次的教学内容由指定任课教师给出组卷方案;第五考核层次包括民族学与社会学学院的社会工作、社会学专业,试卷采用“公共概率周4题库(社会)”由计算机组卷,考试内容依据第五教学层次的教学内容由指定任课教师给出组卷方案。

此外,按照期末考核要求,需建立“公共概率周2题库(心理/电气/食品/土木)”、“公共概率周3题库1(管理/经济/教育技术)”、“公共概率周3题库2(计算机/软件)”、“公共概率周4题库(社会)”4种计算机组卷题库。原则上,若某学期需要用某一题库进行计算机组卷,则该学期需修订该题库。题库的建立、修订及增补试题应提前提出出题原则和出题知识点。修订教师依据各分层考核方案中的要求及教学层次中的考核要点给出本学期期末考试的组卷方案;

五、教学反馈

为了提高公共数学《概率论与数理统计》的教学质量,需要实施教学反馈制度。教学反馈从信息获取渠道的主体不同可分为三个层次:最低一层是任课教师从学生处获得反馈,中间一层是学院(任课教师所在学院、学生所在学院)或教研室从任课教师和学生处获得反馈,最高一层是教务部门从学生所在学院和开课学院获得反馈。每一层中获得反馈信息的主体有义务根据反馈意见改进相应的教学活动。具体操作方式如下:

任课教师从学生处获得反馈信息的方式可从以下几个方面入手:一是可从学生听课的表情中获取。课组织得好,讲得生动有趣,学生既在听课,也在积极思考,表情自然喜形于色,而不是满脸的困惑和迷惘;二是可从课堂提问中获取。教师可选择一些与课堂教学内容密切相关的问题和题目进行抽查,根据抽查结果,应可粗略地估计出全班同学对问题的理解;三是可从课后作业和测验中获取。主要的是靠课后辅导、作业批改、小测验等去搜集信息,加以整理归纳出为多数学生所困扰的问题,对症下药,以待下次课上矫正;四是班干部定期向老师反映没听懂的地方,教师及时强化训练。

精选图文

221381
领取福利

微信扫码领取福利

微信扫码分享