欢迎访问AA范文大全网!

大学数学论文3000范文(推荐3篇)

知识的力量 分享 时间: 加入收藏 我要投稿 点赞

本文共计5909个文字,预计阅读时间需要24分钟。

大学数学论文3000范文 第1篇

3.3增强选择数学模型的能力。

选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:

函数建模类型实际问题

一次函数成本、利润、销售收入等

二次函数优化问题、用料最省问题、造价最低、利润最大等

幂函数、指数函数、对数函数细胞分裂、生物繁殖等

三角函数测量、交流量、力学问题等

3.4加强数学运算能力。

数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。

大学数学论文3000范文 第2篇

随着科技的进步和社会的发展,数学这一基础学科已与其他学科相结合,且应用愈来愈广,已渗透到生产和生活的各个方面。我国从1992年开始举办大学生数学建模竞赛。近年来,大学生数学建模竞赛迅猛发展,为高等数学的应用型教学指引了方向,同时也激发了大学生的创新思维,锻炼了大学生的实践能力,受到了社会各界人士的关注和好评。

一、数学建模和大学生数学建模竞赛

何为数学建模?有人认为,数学模型即以现实世界为目的而做的抽象、简化的数学结构;也有人认为,数学模型就是将现实事物通过数学语言来转化为常见的数学体系。事实上,数学建模是运用数学知识从实际课题中抽象、提炼出数学模型的过程,主要方法是通过合理假设、引进自变量、借助各种数学工具实现对现实事物的数字化转变,进而描述或解决实际问题。

那么,受广大高校师生青睐的大学生数学建模竞赛又是什么呢?数学建模竞赛是全国大学生参与规模最大的课外科技活动,从一个侧面反映一个学校学生的综合能力,为学生提供了展示才华的舞台。大学生数学建模竞赛具有一定的开放性和应用性,同时兼具一定的综合性和挑战性。成果以一篇论文的形式上交,要求必须包含完整的建模步骤,包括问题的提出、模型的假设、变量的引入、建模过程、模型求解与分析、模型检验及应用。

二、大学生数学建模竞赛与课程教学培训中存在的问题

通过对山西工商学院历年来参加大学生数学建模竞赛的选手及其相关指导老师进行调查、走访,并考察其他高校的情况,笔者发现,相比往年的成绩,各大高校在近几年的竞赛成绩上有了飞速的提高,在学校的组织和鼓励下,参赛人数逐年递增,数学建模教学每年都在不断改革,同时除了参加竞赛,还在课堂外实践了数学与生产实际的结合过程。然而,通过参阅文献和访谈笔录资料,笔者也总结了近几年来大学生数学建模竞赛及竞赛培训教学中存在的相关问题。

第一,参赛学生的学习能力和综合素质有待提高。在思想品质方面,数学建模的参赛过程极其艰苦,需要学生具备意志力、求知欲、团队意识。我们的队员往往在此三方面表现一般。同时,在数学能力方面,学生的数学基础知识储备不足,软件处理的方法单一,实际问题转化为数学结构的创新思维并不能良好地展现。

第二,根据上述学生所表现出的问题不难发现,教师团队在数学建模培训教学过程中,教学观念滞后,创新能力有待提高,教学模式亟待突破,数学建模的教师团队应当做好学生的表率,要吃苦耐劳,要通力合作。

第三,正因为上述问题,数学建模培训也出现了弊端。培训方式单一,培训只讲求深入而不探索广度,培训时间安排不合理,培训的内容与建模竞赛不对接。

第四,经过调查发现,部分高校对组织数学建模竞赛的前期工作没有给予足够的重视,少数高校在竞赛的组织和开展中急功近利。另外,大多数高校在数学建模教学教育的过程中缺乏完整的制度和保障体系。

三、大学生数学建模课程教学培训策略

大学生建模竞赛除了能为部分大学生及其指导老师和高校获得荣誉外,更能培养大学生综合运用所学专业的意识,提升大学生的创新思维和抽象思维,以及自主学习能力和团队协作能力。因此,在数学建模课程教学培训中,应做好如下工作。

(一)教师层面

首先,数学建模课程教学培训应当以创新为起点。建模不是凭空而来的,教师要引导学生从生活实际中抽象出数学模型,真正在选题上下功夫,培养学生的创新思维。

其次,数学建模课程教学培训应当以数学知识体系为基础。教师不能仅仅将自己的专业知识传授给学生,数学博大精深,自身要不断涉猎新知识,不仅要注重数学学习的深度,更应当拓展数学学习的广度,为数学建模竞赛打下坚实的基础。

最后,数学建模课程教学培训应当回归实践。建模的目的是为了解决实际问题,无论多么复杂的数学模型,最后都要落到解决后的结果中。因此,教师既要教会学生建模,又要教会学生将建模的方法真正应用于解决实际问题,做到学以致用。

(二)学校层面

首先,制定系统的数学建模课程体系,包括合理的学时、学制,保证学生的学习,不能在竞赛前急抓一批学生现学现用。

其次,学校要做好数学建模竞赛的宣传和指导工作,尽量保证每位学生都能于在校期间参加比赛,获得锻炼。

最后,学校要时刻以学生为主,不能一味地为了获奖而出现教师代替学生的现象。

参考文献:

[1]刘建州.实用数学建模教程[M].武汉:武汉理工大学出版社,20xx.

[2]李尚志.数学建模竞赛教程[M].南京:江苏教育出版社,1996.

[3]赫孝良.数学建模竞赛赛题简析与论文点评[M].西安:西安交通大学出版社,20xx.

大学数学论文3000范文 第3篇

培养工科类大学生数学模型方法的探索与研究

【摘要】高等数学是高校工科类专业中一门必修的基础课。学生对高等数学的理解和掌握情况一定程度上影响到其他课程的学习,包括计算机类、信息类和专业课程。其中,数学模型方法对培养和提高大学生的逻辑思维能力、实际应用能力和总体综合素质有着非常重要的作用。鉴于此,本文结合实际例子从几个方面探索和研究如何更好地在工科类大学生中培养数学模型方法,为现有的教学改革提供可参考的方案,以期提高高等数学的教学效果。

【关键词】数学模型方法 工科 大学生 教学改革 培养

21世纪是大数据的信息时代,计算机技术和信息技术迅猛发展,数学模型方法及其应用在工程技术领域发挥着举足轻重的作用。同时,数学模型方法也在广度上和深度上向着其他应用领域如人工智能、金融、经济、医学、天文、地理和海洋等不断渗透。因此,应用数学技术特别是数学模型方法已经成为高新技术的重要组成部分之一。当应用数学模型方法去解决生产和科技的实际问题时(或与其他学科交叉结合时),首要的且关键的一步就是建立相应的数学模型,把抽象的现象转化为具体的数学表达,再进行模型求解与计算。

如何更好地培养工科类大学生数学模型方法和数学思维的构成,对其教学研究和方法探索势在必行。本文主要围绕以下几个部分进行探讨:

一、课堂上摒弃传统的说教式教学方法,实施启发式教学

传统的数学教学方式还是停留于说教式的教学,不论

是数学概念、数学模型、数学定理,还是方法求解,这导致了工科专业的大学生在课堂上出现疲惫现象,学习没有兴趣,积极性低。然而,理解并掌握这些数学概念和数学模型是学习好高等数学的前提。为提高工科专业大学生学习数学的积极性,教师们要提倡启发式教学,它可以培养大学生:(1)独立思考的能力;(2)逻辑思维的能力;(3)随机应变的能力。这样,同学们可以主动地参与课堂教学活动,深入到数学模型方法中来。在具体做法方面,首先要改变“照本宣科”的教学模式,对于不同专业背景的学生,要因学生的水平差异而变,特别是讲稿的处理,要避免一成不变。其次,除了正常授课外,还要预留部分时间给学生回想和思考,给他们提出疑问的机会。例如,我们在介绍不定积分例题时(例1),故意引入错误,并提示学生刚学过的函数连续性,启发学生自行寻找错误,让他们真正进入课堂。

二、采用线上学习和线下讨论相结合,领会数学模型意义

教学可以说是教的过程和学的过程相结合的统称,教师在课堂上进行正常授课,而学生利用课余时间进行自主学习和讨论。数学本身具有高度的抽象性、严密的逻辑性和广泛的应用性等特点,故学生的线上学习(即:教师课堂教学)是理论知识和专业技能掌握的主要渠道,这一环节是重中之重,国内外的大学数学课堂均采用这一方式。对于数学模型方法的讲解,线上学习过程中就要求我们任课教师提前认真研读教材、深入理解教材并细致钻研教材,然后选择适当的教法进行有效教学。在线学习对大学生非常重要,因为多数学生是通过授课课堂直接获得新知识,直接接受正规的教育方式,许多不明白的问题都能够通过在线学习方式得到解决。

然而,仅仅在线学习的方式对于数学模型方法及其应用的学习是不够的,且被动性占主导地位。线下讨论是一种新的学习方式,它崇尚思考、注重交流、促进沟通和团队合作,是大学生群体中一种有价值的、有意义的学习活动。线下讨论主要通过布置与课堂相关的问题,引发学生对本课堂的反思和知识的消化。本着培养工科专业大学生学习数学的主动性和团队性,不同的学生对数学模型或数学方法的理解可能有所不同。线下讨论刚好可以通过所设置的问题,有针对性地引导学生对教学要点或重点进行积极的讨论。这样,对于同一个数学模型,把各种理解融合在一起,充分讨论和分析后才能真正领会数学模型的意义。例如,我们在讲解极限的计算时,布置一题作业(例2,此题的答案是极限不存在)作为线下讨论题,它是单调递增数学模型的极限问题。此题中,不同学生可能会产生不同答案。通过线下讨论,学生可以自行领会极限计算和单调递增数学模型的意义。

例2,(单调递增数学模型的极限):假设a1=1,an+1=1+3an,n=1,2,3…,试计算 。

三、高等数学教学中突出数学模型方法,提高大学生数学模型的应用能力

传统的高等数学教学方法(特别是工科类专业)遵循概念介绍、定理证明和例题计算这一过程。工科专业的学生不是数学专业的,他们只知道要为数学的重要性而学习,要为通过课程考试而学习。但他们不知道学习完高等数学可以做什么,或者在哪些场合能用得上。这也是目前很多大学生觉得高等数学没有什么太大的价值,不能直接产生经济效益,甚至出现“数学无用论”的观点。

为激发工科类专业大学生对高等数学的学生兴趣和提高他们对高等数学应用性的认识,在高等数学的授课过程中必须突出数学模型方法,引入相关数学模型的案例。让学生把数学模型套入现实生活中的问题,引导学生感受到数学模型方法在解决实际问题时的重要性,同时提升数学模型的应用能力。例如,我们在导数最值的授课过程中,插入森林救火数学模型(例3,通过在教学中突出数学模型方法,可以活跃课堂气氛,增加数学的趣味性,让数学课堂充满生命力。我们知道数学模型来源于实际,通过教学又应用于实际,这对提高学生应用数学模型方法来解决实际问题的能力、树立数学的价值观,高等数学教学中突出数学模型方法具有一定的积极作用。 例3,(森林救火数学模型):某消防部门接到报警后要派出消防员前去灭火。通常情况下,派出的队员越多,灭火越快,森林损失越小,但救援的开支也将随之变大。已知森林燃烧的损失费正比于森林的烧毁面积,比例系数为b1。烧毁面积与失火和灭火的时间有关,灭火时间又取决于消防队员人数。故,救援费有两部分:(1)每个消防队员单位时间的灭火费b2;(2)每个队员的一次性支出费b3。又假定火势蔓延程度及平均每个消防队员的灭火能力与火势有关。试建立一个数学模型来分析应该派出多少个消防队员使得总费用达到最小。

四、鼓励学生参加课外科技活动,把数学模型方法运用于解决实际问题

马克思曾说过:“一门科学只有成功地运用数学时,才算达到了完整的地步。”那么工科专业的大学生在学习数学模型方法时,不能仅仅停留在对书本知识的掌握上,要结合相关背景把数学模型应用到其中。因此,我们要鼓励他们积极参加课外科技活动,特别是全国大学生数学建模竞赛、美国(国际)大学生数学建模竞赛、全国大学生电工数学建模竞赛和亚太大学生数学建模竞赛等。数学建模竞赛不是针对数学专业的学生,工科专业的学生也可以参加。这样,在针对实际问题时,应用已经学过的知识进行求解,达到学以致用的效果。

从历年的大学生数学建模竞赛看出,所设计的题目一般是从管理科学、工程技术、地理信息系统和经济学等领域实际问题提出来的,一般只做简化处理未有任何假设。参赛过程中要求参赛者在三天内完成材料收集、模型假设、模型建立、模型求解、计算机实践、结果检验以及撰写出一篇完整的竞赛论文。因此,学生要结合实际问题、分析现实背景和灵活运用学科知识,再利用适当的数学方法和相关知识去提炼成一个数学模型。例如,20xx年全国大学生数学建模竞赛C题(见例4)。

例4(古塔的变形)由于长时间承受自重、气温、风力等各种作用,偶然还要受地震、飓风的影响,古塔会产生各种变形,诸如倾斜、弯曲、扭曲等。为保护古塔,文物部门需适时对古塔进行观测,了解各种变形量,以制订必要的保护措施。某古塔已有上千年的历史,是我国重点保护文物。管理部门委托测绘公司先后于1986年7月、1996年8月、20xx年3月和20xx年3月对该塔进行了4次观测。请根据题目附件提供的4次观测数据,讨论以下问题:(1)给出确定古塔各层中心位置的通用方法,并列表给出各次测量的古塔各层中心坐标;(2)分析该塔倾斜、弯曲、扭曲等变形情况;(3)分析该塔的变形趋势。

五、结束语

总之,在工科专业大学生中培养其数学模型方法能提高他们应用数学知识解决实际工程问题的能力。一方面,可以激发学生学习高等数学的兴趣,提高学习的积极性和自觉性;另一方面,还可以推动高等数学的教育教学改革,并推广到其他学科的改革和完善。目前,我校正处于教学定位的转型期,20xx年有10个专业升格为一本招生,即:水产养殖学、海洋渔业科学与技术、海洋科学、海洋技术、大气科学、食品科学与工程、食品质量与安全、机械设计制造及其自动化、电气工程及其自动化、计算机科学与技术,其中,工科专业的学科就占了50%的比重。因此,本文借助数学模型方法的教学研究与改革为我校的“三能”人才培养服务,不断提高工科类大学生的数学应用水平和数学思维能力,为社会培养更多更优秀的人才服务。

参考文献

[1]王涛、常思浩、薛峰等。数学模型与实验[M]。北京:清华大学出版社,20xx

[2]兰艳。浅谈在高等数学教学中如何将基本概念形象化[J]。数学理论与应用,20xx(4):122~124

[3]陈文英。高等数学中解题错误分析[J]。电大理工,20xx(2):71~72

[4]徐为、谭金锋。基于“动态生成”的大学数学课堂教学[J]。大学数学,20xx(1):144~148

[5]刘广臣、宋美、董珍。大学生数学建模竞赛策略的研究[J]。高等数学,20xx(3):56~59

[6]魏首柳、柯小玲。对大学生数学建模竞赛的几点探讨[J]。教育教学论坛,20xx(8):215~216

精选图文

221381
领取福利

微信扫码领取福利

微信扫码分享