本文共计6562个文字,预计阅读时间需要27分钟。
初中数学投影教案模板范文 第一篇
一、教学目标:
1、理解二元一次方程及二元一次方程的解的概念;
2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;
3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;
4、在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。
二、教学重点、难点:
重点:二元一次方程的意义及二元一次方程的解的概念。
难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
三、教学方法与教学手段:
通过与一元一次方程的比较,加强学生的类比的思想方法;通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点。
四、教学过程:
1.情景导入:
新闻链接:桐乡70岁以上老人可领取生活补助,
得到方程:80a+150b=902880.
2.新课教学:
引导学生观察方程80a+150b=902880与一元一次方程有异同?
得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程。
做一做:
(1)根据题意列出方程:
①小明去看望奶奶,买了5kg苹果和3kg梨共花去23元,分别求苹果和梨的单价。设苹果的单价x元/kg,梨的单价y元/kg;
②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程:。
(2)课本P80练习2.判定哪些式子是二元一次方程方程。
合作学习:
活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动。
问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人。
团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行?为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等?由学生检验得出代入方程后,能使方程两边相等。得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解。
并提出注意二元一次方程解的书写方法。
3.合作学习:
给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换。(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法。提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?
出示例题:已知二元一次方程x+2y=8.
(1)用关于y的代数式表示x;
(2)用关于x的代数式表示y;
(3)求当x=2,0,-3时,对应的y的值,并写出方程x+2y=8的三个解。
(当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快)
4.课堂练习:
(1)已知:5xm-2yn=4是二元一次方程,则m+n=;
(2)二元一次方程2x-y=3中,方程可变形为y=当x=2时,y=;
5.你能解决吗?
小红到邮局给远在农村的爷爷寄挂号信,需要邮资3元8角。小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案。
6.课堂小结:
(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);
(2)二元一次方程解的不定性和相关性;
(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。
7.布置作业:
教学设计意图:
依照课程标准,通过分析教材中教学情境设计和例习题安排的意图,在此基础上依据学生实际,制订了本堂课的教学目标,教学重点和难点,课堂教学的设计始终围绕这教学重点和难点展开。
在充分理解教材编写意图、教学要求和教学理念的基础上,根据学生实际,从学生的已有经验出发,创设了教学情境:关心老人,突出情感主线,并贯穿整个教学。并对教学
内容进行适当的重组、补充和加工等,创造性地使用了教材。所选择的例习题都体现实际问题数学化的思想,让学生感受到数学的魅力。这两个方面的设计贯穿整堂课,把知识内容和情感体验自然连贯起来。
其次,在教学过程设计中,体现了让学生展示解决问题的思维过程,通过几个合作学习,激发学生主动去接触问题,从而达到解决问题的目的。重视学生学习过程中的自我评价和生生间的相互评价,关注学生对解题思路回顾能力的培养。
二元一次方程概念的教学中,通过与一元一次方程的类比的方法,使得学生加深印象。在突破难点的设计上,通过游戏的形式激发学生的学习兴趣,并在选题时,通过降低例题的难度,使学生迅速掌握用关于一个未知数的代数式表示另一个字母的方法,体会运用这种方法的可使求二元一次方程求解更简便。
初中数学投影教案模板范文 第二篇
一、教学目标
1、了解二次根式的意义;
2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题;
3、掌握二次根式的性质和,并能灵活应用;
4、通过二次根式的计算培养学生的逻辑思维能力;
5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。
二、教学重点和难点
重点:
(1)二次根的意义;
(2)二次根式中字母的取值范围。
难点:确定二次根式中字母的取值范围。
三、教学方法
启发式、讲练结合。
四、教学过程
(一)复习提问
1、什么叫平方根、算术平方根?
2、说出下列各式的意义,并计算
(二)引入新课
新课:二次根式
定义:式子叫做二次根式。
对于请同学们讨论论应注意的问题,引导学生总结:
(1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?
若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。
(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次
根式指的是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。
例1当a为实数时,下列各式中哪些是二次根式?
例2x是怎样的实数时,式子在实数范围有意义?
解:略。
说明:这个问题实质上是在x是什么数时,x—3是非负数,式子有意义。
例3当字母取何值时,下列各式为二次根式:
分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。
解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。
(2)—3x≥0,x≤0,即x≤0时,是二次根式。
(3),且x≠0,∴x>0,当x>0时,是二次根式。
(4),即,故x—2≥0且x—2≠0,∴x>2。当x>2时,是二次根式。
例4下列各式是二次根式,求式子中的字母所满足的条件:
分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。
解:(1)由2a+3≥0,得。
(2)由,得3a—1>0,解得。
(3)由于x取任何实数时都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。
(4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。
初中数学投影教案模板范文 第三篇
一、学习目标:
1、掌握二次根式的运算方法,明确数的运算顺序、运算律及乘法公式在根式的运算中仍然适用。
2、正确运用二次根式的性质及运算法则进行二次根式的混合运算。
二、学习重点:
正确运用二次根式的性质及运算法则进行二次根式的混合运算。
学习难点:二次根式计算的结果要是最简二次根式。
三、过程
知识准备
1、满足下列条的二次根式是最简二次根式。
2、回忆有理数,整式混合运算的顺序。
3、回忆并整理整式的乘法公式。
方法探究1
⑴(512+23)x15
⑵(3+10)(2-5)
归纳:
尝试练习:
⑴(3+22)x6
⑵(827-53)6
⑶(6-3+1)x23
⑷(3-22)(33-2)
⑸(22-3)(3+2)
⑹(5-6)(3+2)
方法探究2
⑴(3+2)(3-2)
⑵(3+25)2
归纳:
尝试练习:
⑴(5+1)(5-1)
⑵(7+5)(5-7)
⑶(25-32)(25+32)
⑷(a+b)(a-b)
⑸(3-2)2
⑹(32-45)2
⑺(3-22)(22-3)
⑻(a-b)2
⑼(1-23)(1+23)-(1+3)2
⑽(3+2-5)(3+2+5)
例题解析
1、计算:(22-3)2011(22+3)2012。
2、若x=10-3,求代数式x2+6x+11的值。
3、若x=11+72,y=11—72,求代数式x2-xy+y2的值。
内反馈
1、计算12(2-3)=
2、计算⑴(2+3)(2-3)=
⑵(5-2)2010(5+2)2011=
3、计算:
⑴12(75+313-48)
⑵(1327-24-323)12
⑶(23-5)(2+3)
⑷(5-3+2)(5+3-2)
⑸(312-213+48)÷23
4、已知a=3+2,b=3-2,求下列各式的值。
⑴a2-b2
⑵1a-1b
⑶a2-ab+b2
5、若x=3+1,求代数式x2-2x-3的值。
初中数学投影教案模板范文 第四篇
一、目的要求
1、使学生初步理解一次函数与正比例函数的概念。
2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。
二、内容分析
1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。
2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。
3、“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。
三、教学过程
复习提问:
1、什么是函数?
2、函数有哪几种表示方法?
3、举出几个函数的例子。
新课讲解:
可以选用提问时学生举出的例子,也可以直接采用教科书中的四个函数的例子。然后让学生观察这些例子(实际上均是一次函数的解析式),y=x,s=3t等。观察时,可以按下列问题引导学生思考:
(1)这些式子表示的是什么关系?(在学生明确这些式子表示函数关系后,可指出,这是函数。)
(2)这些函数中的自变量是什么?函数是什么?(在学生分清后,可指出,式子中等号左边的y与s是函数,等号右边是一个代数式,其中的字母x与t是自变量。)
(3)在这些函数式中,表示函数的自变量的式子,分别是关于自变量的什么式呢?(这题牵扯到有关整式的基本概念,表示函数的自变量的式子也就是等号右边的式子,都是关于自变量的一次式。)
(4)x的'一次式的一般形式是什么?(结合一元一次方程的有关知识,可以知道,x的一次式是kx+b(k≠0)的形式。)
由以上的层层设问,最后给出一次函数的定义。
一般地,如果y=kx+b(k,b是常数,k≠0)那么,y叫做x的一次函数。
对这个定义,要注意:
(1)x是变量,k,b是常数;
(2)k≠0 (当k=0时,式子变形成y=b的形式。b是x的0次式,y=b叫做常数函数,这点,不一定向学生讲述。)
由一次函数出发,当常数b=0时,一次函数kx+b(k≠0)就成为:y=kx(k是常数,k≠0)我们把这样的函数叫正比例函数。
在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的:
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
写成式子是(一定)
需指出,小学因为没有学过负数,实际的例子都是k>0的例子,对于正比例函数,k也为负数。
其次,要注意引导学生找出一次函数与正比例函数之间的关系:正比例函数是特殊的一次函数。
课堂练习:
教科书13、4节练习第1题.
初中数学投影教案模板范文 第五篇
圆柱、圆锥、圆台和球
总课题
空间几何体
总课时
第2课时
分课题
圆柱、圆锥、圆台和球
分课时
第2课时
目标
了解圆柱、圆锥、圆台和球的有关概念、认识圆柱、圆锥、圆台和球及其简单组合体的机构特征。
重点难点
圆柱、圆锥、圆台和球的概念的理解。
1引入新课
1、下面几何体有什么共同特点或生成规律?
这些几何体都可看做是一个平面图形绕某一直线旋转而成的。
2、圆柱、圆锥、圆台和球的'有关概念。
3、圆柱、圆锥、圆台和球的表示。
4、旋转体的有关概念。
1、例题剖析
如图,将直角梯形绕边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?
例2指出图、图中的几何体是由哪些简单的几何体构成的、
直角三角形中,将三角形分别绕边,三边所在直线旋转一周,由此形成的几何体是哪一种简单的几何体?或由哪几种简单的几何体构成?
2、巩固练习
1、指出下列几何体分别由哪些简单几何体构成。
2、如图,将平行四边形绕边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?
3、充满气的车轮内胎可以通过什么图形旋转生成?
1、课堂小结
圆柱、圆锥、圆台和球的有关概念及图形特征。
2、课后训练
一基础题
1、下列几何体中不是旋转体的是()
2、图中的几何体可由一平面图形绕轴旋转形成,该平面图形是()
ABCD
3、用平行与圆柱底面的平面截圆柱,截面是_____________________________________.
4、_____________________可以看作圆柱的一个底面收缩为圆心时,形成的空间几何体、
5、用平行于圆锥底面的一平面去截此圆锥,则底面和截面间的部分的名称是_________。
6、如图是一个圆台,请标出它的底面、轴、母线,并指出它是怎样生成的。
二提高题
7、请指出图中的几何体是由哪些简单几何体构成的。
三能力题
8、如图,将直角梯形绕、边所在直线旋转一周,由此形成的几何体分别是由哪些简单几何体构成的?
ADCB图1A图2DBC
初中数学投影教案模板范文 第六篇
一、课题
过三点的圆
二、教学目标
1.经历过一点、两点和不在同一直线上的三点作圆的过程。
2.. 知道过不在同一条直线上的三个点画圆的方法
3.了解三角形的外接圆和外心。
三、教学重点和难点
重点:经历过一点、两点和不在同一直线上的三点作圆的过程。
难点:知道过不在同一条直线上的三个点画圆的方法。
四、教学手段
现代课堂教学手段
五、教学方法
学生自己探索
六、教学过程设计
(一)、新授
1.过已知一个点A画圆,并考虑这样的圆有多少个?
2.过已知两个点A、B画圆,并考虑这样的圆有多少个?
3.过已知三个点A、B、C画圆,并考虑这样的圆有多少个?
让学生以小组为单位,进行探索、思考、交流后,小组选派代表向全班学生展示本小组的探索成果,在展示后,接受其他学生的质疑。
得出结论:过一点可以画无数个圆;过两点也可以画无数个圆;这些圆的圆心都在连结这两点的线段的垂直平分线上;经过不在同一直线上的三个点可以画一个圆,并且这样的圆只有一个。
不在同一直线上的三个点确定一个圆。
给出三角形外接圆的概念:经过三角形三个顶点可以作一个圆,这个圆叫作三角形的外接圆,外接圆的圆心叫做三角形的外心。
例:画已知三角形的外接圆。
让学生探索课本第15页习题1。
一起探究
八年级(一)班的学生为老区的小朋友捐款500元,准备为他们购买甲、乙 两种图书共12套。已知甲种图书每套45元,乙种图书每套40元。这些钱最多能买甲种图书多少套?
分析:带领学生完成课本第13页的表格,并完成2、3 问题,使学生清楚通过列表可以更好的分析题目,对于情景较为复杂的问题情景可采用这种分析方法解题。另外通过此题,使学生认识到:在应不等式解决实际问题时,当求出不等式的解集后,还要根据问题的实际意义确定问题的解。
(二)、小结
七、练习设计
P15习题2、3
八、教学后记
后备练习:
1. 已知一个三角形的三边长分别是 ,则这个三角形的外接圆面积等于 。
2. 如图,有A, ,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()
A.在AC,BC两边高线的交点处
B.在AC,BC两边中线的交点处
C.在AC,BC两边垂直平分线的交点处
D.在A,B两内角平分线的交点处
上一篇:建设项目开工通知范文(12篇)
下一篇:军旅主题教育活动总结范文(6篇)