本文共计23807个文字,预计阅读时间需要96分钟。
数学实验与建模报告范文 第1篇
摘要:自立体影像技术诞生以来,已经经历了数百年。在早期,它主要被应用于影视、广告行业中,丰富了电影电视的传播内容和表现形式。随着立体影像技术的发展,低质量的3D特效已经不能满足观众对立体感和舒适度的追求。近年来,舞台表演中开始使用立体影像技术,需要高质量的立体特效扩展表演的艺术空间,所以,探究立体影像的数学模型就成为一个重要的课题。针对立体影像的拍摄和呈现过程,建立了数学模型。在该模型中,拍摄过程中的变量(焦距、容许弥散圆直径、2台摄像机的间距等)和呈现过程中的变量(视角、视角差、像素差等)都会影响立体影像最终的立体效果(立体感和舒适度)。
关键词:立体影像技术;立体效果;数学模型;视觉成像原理
立体影像技术的应用给人们带来了全新的视觉感受和艺术体验。它是通过摄像机拍摄或计算机制作,然后再投影到电子屏、全息膜等显示设备上展示给观众,拍摄和呈现是一个几何光学模型。在该模型中,摄像机参数、观众的物理参数和生理信息等多种变量会影响最终立体效果的质量,其中一个比较重要的变量就是观众观看立体场景中的视角差。
1文献综述
立体影像技术从诞生到今已有数百年。CharlesWheatstone于1838年首次提出了立体视觉的视觉成像原理;而Howard,.把立体视觉定义为双眼获得视觉信息以后对深度和三维空间的感知。之后,CharlesWheatstone又提出了双目视觉立体成像原理,并利用该原理制作了立体图像和立体镜。在立体镜中,观察者左眼和右眼分别看到不同的图像,大脑将2个图像合成到一起就会形成立体图像。尽管当时的设备比较简陋,但双目成像原理为立体影像技术的发展奠定了基础。随着影视技术的发展,胶片电影被发明出来之后,人们开始通过各种方式拍摄立体电影,其中,最常见的就是基于双目立体成像原理――使用2台摄像机模拟人眼,拍摄同一个物体或场景,最后将得到的2张画面进行合成,得到成片。观众观看时,可以运用不同的技术让不同的画面进入左右眼,经过观众大脑处理以后形成立体视觉。20世纪50年代,彩色电视机投入使用,互补色3D分像电视技术被普遍应用于制作立体影像。该3D成像技术的基本应用方法是,拍摄时,使用2台摄像机,在摄像机镜头前加滤光镜拍摄同一个物体或场景。观众从彩色电视机的屏幕观看时,戴上滤光镜,就可以让左右眼分别看到不同颜色的图像,从而获得立体图像。互补色3D分像电视技术兼容性比较好,所以,刚开始投入使用时,曾被大范围普及。但是,使用滤光镜会使拍摄得到的图像色彩信息损失比较大,观众在观看时获得画面失真严重,并且容易感觉不适。20世纪70年代,另一种时分式立体电视技术得到了迅速发展。该技术利用彩色电视信号的奇场和偶场进行立体电视信号的编码,在显示图像时交替显示左右眼2个图像,通过红外控制开关控制液晶眼镜的开闭,让左右眼分别获取不同的图像。随着液晶技术和光栅技术的发展,当代的立体影像技术主要分为裸眼立体影像技术和偏光式立体影像技术2种。裸眼立体影像技术是指,观察者不需要佩戴任何设备,直接用肉眼就可以观察到显示设备上场景和物体的3D效果技术。由于不需要观看者佩戴设备,它深受观众的喜爱。但是,由于其需要特殊的显示设备,使用特定立体显示技术,所播放或展示的图像都需要进行特殊制作,因此,裸眼立体影像技术的成本比较高。在裸眼立体显示技术中,使用最多的有多透镜、视差光栅、体三维显示、全息投影和光场显示技术。1985年,ReinhardBoerner第一次使用多透镜来显示立体平面。19世纪90年代,SegaAM3制造出单人3D裸眼显示器的雏形。如今,裸眼立体影像技术的进一步研究与开发主要在欧洲和日本。受成本、视角等因素的限制,裸眼立体影像技术主要用于商用大屏幕显示。偏光式立体影像技术则需要观看者佩戴偏光眼镜,但是,其色彩丰富,立体感较强,所以,在当今的电影、展览等行业十分流行。在展示立体图像时,2张不同的图片重叠放映在同一个屏幕上,或者通过偏光滤光镜到达观看者的双眼。这种立体影像技术成本低廉,被广泛普及。
2立体效果数学模型的建立
为了建立有立体效果的整体数学模型,需要为拍摄过程和呈现过程分别建立数学模型,再通过拍摄和呈现过程中的共有变量连接2个模型,从而得到融合了拍摄和呈现过程的关于立体效果的数学模型。呈现过程双目立体成像几何关系如图1所示。由几何相似关系可以得到:拍摄过程设δ为相机的容许弥散圆直径,F为镜头光圈值,f为镜头焦距,L为对焦距离,D1为后景深,D2为前景深,η为显示立体图像时的放大倍数,连接呈现和拍摄过程由于双眼接收左右2个不同的立体图像,所以,拍摄时也需要使用2台摄像机来拍摄同一物体或场景,从而得到一组立体图像对,最终合成为1个立体图像。设Lcamera为2个摄像机的相机间距,则可以定义式(14)中:Lmax为观看的场景中最远点到屏幕的距离;Lmin为观看的场景中最近点到屏幕的距离;k为同一像点在左右2幅图像中的像素差。
3结论
本文针对立体影像的拍摄过程和呈现过程建立了数学模型。在该模型中,拍摄过程中的变量(焦距、容许弥散圆直径、镜头光圈值、对焦距离、两台摄像机的间距、前景深、后景深等)和呈现过程中的变量(视角、视角差、观看者的瞳距、屏幕上的像素差、屏幕上像的景深等)会直接影响立体影像最终的立体效果(立体感和舒适度)。这个数学模型的建立为研究立体影像的最佳效果、立体影像的应用等都提供了理论性的支持。
数学实验与建模报告范文 第2篇
论文标题:xxxxxxx
摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。
一般说来,摘要应包含以下五个方面的内容:
①研究的主要问题;
②建立的什么模型;
③用的什么求解方法;
④主要结果(简单、主要的);
⑤自我评价和推广。
摘要中不要有关键字和数学表达式。
数学建模竞赛章程规定,对竞赛论文的评价应以:
①假设的合理性
②建模的创造性
③结果的正确性
④文字表述的清晰性 为主要标准。
所以论文中应努力反映出这些特点。
注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。
一、 问题的重述
数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。
此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。
这部分的内容是将原问题进行整理,将已知和问题明确化即可。
注意:在写这部分的内容时,绝对不可照抄原题!
应为:在仔细理解了问题的基础上,用自己的语言重新将问题描述一篇。应尽量简短,没有必要像原题一样面面俱到。
二、 模型假设
作假设时需要注意的问题:
①为问题有帮助的所有假设都应该在此出现,包括题目中给出的假设!
②重述不能代替假设! 也就是说,虽然你可能在你的问题重述中已经叙述了某个假设,但在这里仍然要再次叙述!
③与题目无关的假设,就不必在此写出了。
三、 变量说明
为了使读者能更充分的理解你所做的工作,
数学实验与建模报告范文 第3篇
摘要:高职院校开设数学建模课程是具有一定意义的,要将建模思想应用到数学教学中,教师就必须适应当前的教学环境,由传统的传授模式转变为创造性地传输方式。教师要不断提高自我教学水平,不断充实自己,用正确的方式引导学生进行学习、实践。
关键词:数学;教学;数学建模
1.数学建模思想的意义
数学建模是指用数学符号将要求从定量角度进行研究分析的实际问题以公式的形式表述出来,再通过进一步计算得到相关结果,用该结果解决实际问题,即通过建立数学模型和求解的整个过程。数学建模是符合学生认知发展过程的,在数学建模中,学生通过对具体的假设、研究,对问题进行深入思考,最终得到结论,再根据实际情况应用到具体问题中。整个过程经历了提出问题、试探问题、提出猜想假设、验证问题及得出结论,整个过程符合学生认知发展的规律。数学建模思想的应用有助于帮助学生提高对数学的重视程度,调动学生学习的主动性,让学生的创造力得到更大的发挥。数学建模的应用对提高教师的教学水平也有所帮助,能够帮助教师更好地对学生进行教学,由此扩大教师在学生中的影响力。教学建模的思想应用还有利于提高学生参加竞赛的综合能力,吸引更多学生参加此类竞赛活动。
2.建模思想对能力的培养
数学建模思想很多是由实际问题的一般思维进行转变才能成为抽象的数学问题的,这要求对数学建模要抓住重点,从具体问题中抽象出问题的本质。因此,建模思想对于培养学生将具体问题经过抽象和简化用数学语言表达的能力具有重要的意义。在高职数学教学中,有很多的数学模型,这些数学模型为帮助学生解决实际问题提供了便利的方法,同时也为创建新的数学模型提供了基础依据。数学建模是将数学理论知识和实际应用联系起来的重要纽带,能够帮助学生不断探索数学中的奥妙,以此提高学生对数学的学习兴趣,提高学生实际应用数学的能力和解决实际问题的能力。运用数学建模解决实际问题的过程中,要根据已知条件的变化,灵活运用新方法和新途径促进学生综合运用能力和创新思维的发展。
3.数学建模在高职数学教学中的应用
利用教学内容渗透数学建模思想在数学教学中,教师要根据教材的情况和学生的实际情况,将两者相联系,让学生能够运用数学建模思想寻找解决问题的办法,解决实际问题。在教学中,教师要向学生灌输数学建模思想,利用具体模型设置和假设情景,把数学知识和实际生活相联系,帮助学生更好地理解数学实际内容,提高知识应用能力。比如在高职数学对定积分概念进行教学时,就可以通过介绍曲边梯形的面积求法,让学生学会分割、求和、取极限的定积分模型思想,然后再进行思考,求物体的体积、质量等。如果学生发现解决这些问题的数学模型的思想基本相同,就会不断拓展新思路解决其他问题。运用这种方式,能够加深学生对概念的理解,拓展学习思维,强化教学效果。在学习定理公式的时候,也可以引进数学建模思想,通过提出问题、假设问题,要求学生计算求值,再根据值的正负情况求出方程式的根,根据根值与区间的关系,引导学生想出零点定理的概念总结。
利用实际问题渗透教学建模思想教师在数学建模教学或布置作业时,要与实际的生活相联系,让学生在实际问题的解决中学会运用建模思想。比如在问题的设置上,可以利用身边熟悉的事物进行提问,让学生从熟悉的环境中找到合适的解决方法。这不仅能够帮助学生更好地理解知识概念,还与学生以后的工作有着紧密的联系。通过在实际问题中渗透教学建模思想,让学生掌握基本的理论知识,提高知识应用能力。此外,教师在课外作业的布置上也要运用数学建模思想解决实际的问题,让学生能够有效利用所学的数学知识分析解决生活中的问题,从而提高知识应用能力,培养出学生的创新思维,提高高职数学建模教学的效率。
提高数学建模思想在教材编写中的应用目前高职数学的教材基本都是按照本科教材进行编排的,重视理论而忽视了应用。高职学生大多数对理论的兴趣不大,对实际应用能够产生一定的兴趣,并较好地进行掌握。所以编写出一本适合高职培养的目标教材是十分重要的,既能满足高职数学建模思想的可持续发展要求,又能充分满足学生的要求,实现高职的培养目标。在高职数学教材的编写上,要重视学生的实际水平,不但要让学生能够学到相应的知识,还要为以后的学习打好基础,培养学生的创造力和进一步深造的能力。教师要把数学建模思想方法运用到教材中,让学生带着问题学习,把讲授的知识点和数学建模思想有机结合,提高学生掌握实际问题的能力,彻底让学生摆脱数学乏味论的问题,能够对所学内容学以致用。
4.提高高职数学教学数学建模思想的方式
教师要重视引导高职教师需要认识到讲授知识并不是教学的终极目标,更主要的是培养学生的应用和创新能力。其教学目的应当是通过科学的数学思维方式培养学生分析问题、解决问题的能力,提高他们自主学习的意识。高职学生的整体知识水平并不是很高,对于很多问题都不能深入地进行思考,遇到难题也没有继续深入研究的动力,缺乏自主创新的意识和独立思考的能力。所以教师需要重视引导的作用,引导学生的思维向更广阔的方向发展,让学生能够用数学思维看待周围的事物,仔细观察、分析各种事物之间的联系和存在的数学模型,并且能够通过数学语言描述事物间的联系,进而用求知的方式解决事物间的实际问题。教师的引导对于学生而言有启迪作用,能够激发学生的求知欲,对数学问题产生兴趣,在实际教学中是一种重要的教学手段。
重视合作的力量教师除了积极引导学生进行数学建模思想外,还要让学生学会用合作的方式提升自己的思维水平。合作可以利用整体的功能弥补一个人思维的狭隘面,解决思考单一问题,促进学生多方面、多角度地思考问题。合作让学生能够尽快找到合适的角色,通过互帮互助的方式共同提高,加快问题的解决。在合作中,学生能够准确利用自己熟悉擅长的环节帮助提高整体的成绩和思维水平,切实加强团队的整体水平和综合素质。团体合作还能让每个学生都参与进去,都有展示和锻炼自己的机会,从而增强自信心,提高学习能力,培养良好的沟通能力,促进学生之间的团结合作,帮助提高学生的交往能力。重视合作的力量,能够帮助学生发现自己的特长和特点,增强信心,提高自我探索精神,同时合作中产生的竞争也能激发学生对数学问题进行深入探究。
重视数学建模过程数学建模的最终目标并不是解决了什么样的问题、获得了什么样的结论,而是在建模过程中学生能够通过自己的努力,不断进行实践和自我否定,最终找到解决具体问题的有效方式。数学建模过程也是一个学习的过程和一个不断提升自我的过程,所以教师要重视数学建模的过程,让学生感受到实践过程的魅力,根据学生的基本状况和不同的特点,综合利用学生的特长和优点提高他们解决实际问题的能力,让学生感受到数学的意义,体会到发现数学的乐趣,养成良好的学习习惯和思维习惯。教师通过引导学生,也要让学生重视数学建模的过程,从数学建模中发现学习的乐趣,产生学好数学的信心和动力,并且通过不断深造发展,能够在数学建模中发挥自己的才能,展现出自己擅长的一面,在建模和交流中获得感受和启发。
5结语
高职院校开设数学建模课程是具有一定意义的,要将建模思想应用到数学教学中,教师就必须适应当前的教学环境,由传统的传授模式转变为创造性地传输方式。教师要不断提高自我教学水平,不断充实自己,用正确的方式引导学生进行学习、实践。教学中只有通过不断创新,根据教学的实际情况提高学生的数学知识应用能力,这样才能不断提高学习效率,帮助学生为以后的学习和工作打下坚实的基础。
数学实验与建模报告范文 第4篇
大学数学建模论文
浅谈MATLAB在数学建模中的应用
摘 要:数学建模是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力的数学手段,是数学与各个领域沟通的桥梁,本文先介绍了数学建模的概念,然后对MATLAB软件相关特点做出介绍,其次从数学建模实例出发,说明了MATLAB软件在数学建模中的重要作用,结果表明MATLAB软件可以使数学建模效率提高,结果清晰、明确,同时在数学教学方面也有重大意义。
关键词:数学建模;MATLAB;数学模型;数值计算
21世纪的今天,我们生活在“大数据”时代里,数据信息隐藏于各行各业,如互联网、股市、勘探、军工、商业等,可以说我们每天都在跟数据打交道,因此高效的数据处理方式显得尤为重要。数学建模是联系实际问题与数学之间的桥梁,建模的思想与以往解决问题的思路有很大的不同,我们以往求解数学问题时,都有明确的目标和已知条件,我们只要通过合理的方法,进行多次的数学运算,便能得到问题的解析解,但在现实生活中,很多实际问题是很难得到解析解的,甚至求解的问题和结果的范围都是模糊不清的,数学建模主要就是解决这样的问题,我们以实际问题出发,根据已有的经验,对已有的数据进行相关的分析、处理,通过合理的简化,建立合适的模型,再求解模型,最终会得到结果,这种方法行之有效,在实际生活中,通过建模已经解决了大量难题,近年来,随着科技的飞速发展,很多数学软件应运而生,如MATLAB、Mathematic、Maple等,目前应用最为广泛的数学软件便是MATLAB,它是1984年由美国MathWork公司推出的商业数学软件,用于算法开发,数据可视化、数值计算的高级计算语言和交互式环境,凭借计算功能强大、操作简便的特点在数学软件中脱颖而出,使得很多人在建模中选择该软件。
为了说明MATLAB软件能够提高数学建模的效率和质量,本文将以高教杯全国大学生数学竞赛A题为例,来演示MATLAB软件在数学建模中的作用,下面首先对数学建模做简要介绍。
1 数学建模简介
数学建模与数学模型
数学建模一词出现的时间并不是很长,大概可以追溯到30年前,它的出现是基于科学技术的进步,尤其近半个世纪以来,随着计算机技术的进步和发展,数学建模便应运而生,并得到迅速的发展,直到现在已经大致形成了体系,在我国,数学建模比赛也有20多年的时间了,建模参考书籍越来越多,内容越来越完备,不同的书籍对数学建模的定义虽然有所不同,但大致可以归纳位:对实际问题进行分析,做出简化假设,分析其内在规律,并运用数学符号和数学语言将规律描述出来,再用适当的数学工具,得到一个数学结构,该结构称为数学模型,建立数学模型的过程叫做数学建模。
应用数学去解决实际问题时,建立数学模型是至关重要的一步,也是比较困难的一步,建立数学模型的过程,就是把一个实际问题进行合理的简化,并对相关信息进行调查、收集、整理,分析出问题的内在规律,并用数学符号将这种隐含的规律表达出来,然后运用恰当的数学方法对其进行分析、计算,最终解决问题,这一步对建模者的数学基础要求比较高,要求建模者有较为完善的数学体系,并且还要有敏锐的想象力和洞察力,数学建模的作用越来越受到数学工程界的普遍认可,它以成为现代科技者的必备技能之一。
数学建模的一般步骤
下面结合数学建模的几个环节和数学建模实例,简要介绍MATLAB在数学建模中的一般步骤,模型准备:在建模前要了解问题的实际背景,搜索问题信息,明确求解目的,从而确定用何种数学方法和建立何种数学模型;模型假设:根据实际对象的特征和建模的目的,抓住问题的主要因素,对问题进行合理简化,用精确的语言提出恰当的假设;模型建立:在假设的基础上,利用合理的数学工具刻画各变量、常量之间的数学关系,建立相应的数学结构;④模型求解:利用获取的数据 和已有的数学方法,来求解上一步的数学问题,对模型的参数进行相应计算⑤模型分析:对所建立的模型的思路进行阐述,对所得的结果进行数学上的分析;⑥模型检验:将模型与实际情况进行比较,以此来检验模型的准确性、合理性,如果不符合实际情况需重新建立模型;⑦模型的推广:在现有的模型基础上,对模型进行更加全面的考虑,使模型更能反映实际情况。
2 建模实例
由于MATLAB软件具有很强的数据处理和数据可视化功能,同时具备有操作方便的特点,所以当把MATLAB软件运用在数学建模里时,必将提高数学建模的质量和效率,并能起到事倍功半的效果,下面以20高教杯全国大学生数学竞赛A题为例来说明MATLAB软件在数学建模里的重要作用。
年高教杯全国大学生数学竞赛题目A题是嫦娥三号软着陆轨道设计与优化问题,嫦娥三号是中国国家航天局嫦娥工程第二阶段的登月探测器,包括着陆器和玉兔号月球车,嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略问题。在卫星着路的过程中,不考虑主减速段,完全由姿态调整发动机控制水平运动的阶段为粗避障和精避障段,为了节省燃料,应尽量减少卫星在空中的悬停时间。题目中附件三、附件四分别是距月球表面2400米和100米的高程图,根据高程图中的数据信息,我们可以确定最佳的降落位置。我们可以运用MATLAB软件对于高程图的进行处理,首先用MATLAB软件软件中imread命令将其转化为矩阵形式,然后分别做出月球表面立体的三维图和等高线二维平面图,建立数值地形的不同区域,我们可以通过三维图很直观的观察到月球表面具体地形、地貌,通过等高线二维图形,我们可以清楚地看到月球表面地势高低变化成度,从而确定卫星降落地最佳地点。本文只以100米高程图作为例子演示,具体地操作程序以及输出结果如下:
g=imread(‘附件4距100m处的高程图.tif’);
% 用imread函数读取图片信息,注意路径要以电脑中图片的实际路径为准
gg=double(g);
% 将图片中的信息转化为数值矩阵信息以便以MATLAB软件进行后期处理
gg=gg-1/255;
% 将彩色值转为0-1的渐变值以便于观察
[x,y]=size(gg);
% 取原图大小
[X,Y]=meshgrid(1:y,1:x);
% 以原图大小构建网格
mesh(X,Y,gg);
% 呈现三维地貌图
contour(X,Y,gg);
% 呈现月球表面等高线图
grid on
3 结论
从本文数学建模实例可以看出,在建模时,当需要对图片、表格、数据进行处理时,我们可以运用MATLAB软件进行解决,MATLAB凭借其丰富的库函数和工具箱,能够非常方便的解决这些问题,并且将数据可视化,结果清晰明了,显示出其他软件无法比拟的优势,除此之外,MATLAB软件在数据分析、数值计算以及规划、预测等多方面数学问题都占有绝对的优势,因此,我们提倡将MATLAB软件引入教学中去,让更多的学生在建模前了解其相关知识,进行软件操作,这不仅能够激发学生的建模积极性,而且可以使学生掌握一项技能,同时也提高学生动手实践能。
数学实验与建模报告范文 第5篇
摘要:数学建模课堂中学生的自主探究、合作学习与教师的科学引导并不矛盾而是相辅相成的。只有在教师科学、适时、适当地引导下才能更好地突出学生的主体地位,从而打造出自主探究、合作学习、愉悦发展的高效数学建模课堂。
关键词:数学建模;教师
一、新课的引入需要发挥教师的作用
教师在数学建模课堂上的引导作用首先体现在教师对新课的引入上。教师一段精彩的导入会点燃学生学习的热情、激发学生的学习兴趣、唤起学生的好奇心,能把学生的注意力迅速集中到要学的知识上来。这对提高教学质量、提高学生的学习效果起着不可估量的作用。同时,新课前的导入环节是对学生进行情感教育的最佳时刻。学生只有在教师的引导下才能够体会到数学建模的价值、增强学好数学建模的信心。俗话说:“好的开始是成功的一半。”数学建模课堂也是这样。因此,在新课引入时要充分发挥教师的作用。
二、在教学任务的设计上需要发挥教师的作用
数学建模课堂一般应采用任务型教学模式,是让学生通过自主探究、合作学习、交流展示的方式完成一系列学习任务来达到特定的教学目标和学习目标。学生在课堂中的主体作用能否得到有效发挥取决于教师对问题设计质量的高低。教师应通过设计一系列高质量的问题把复杂的数学建模问题分解成若干简单问题来引导学生更好地发挥其主动性。学生也只有在这些问题的正确引导下才能突破难点并向着学习目标努力,有效防止学生思考、探究、交流的内容偏离学习目标等现象的出现。这些任务的制订需要充分发挥教师的作用。
三、在新旧知识的联系点上需要发挥教师的作用
建构主义强调新知识是在学生已有知识的基础上通过学生自身有意义的建构获得的。笔者认为,学生自主建构知识应在教师的科学引导下进行。尤其是对于数学建模这样高难度的知识更是这样。失去了教师的科学引导,学生易产生疲倦感,久而久之会丧失学习数学建模的兴趣和信心。因此,在新旧知识联系点上应发挥教师的作用。教师应在准确掌握教学目标、难点的基础上,充分考虑学生的认知能力、习惯、思维方式,通过有针对性的具体问题唤起学生对旧知识的回忆,再通过启发性问题引导学生去发现新知识,从而实现温故知新的目的。在教师引领下学生自主建构知识可以使学生少走弯路,从而使学生更加高效地自主探究、掌握新知识。
四、在教学重点、难点上需要教师的引导
教学的重点、难点是每一节课的核心和主线,只有准确把握了重点、突破了难点才能更好地掌握本节课的内容。在强调学生自主探究、小组合作学习的课堂教学模式中,数学建模教材的重点、难点学生往往把握不准、难以突破。这就需要教师科学引导学生主动去发现重点、突破难点。教师引导学生发现重点、突破难点并不是让教师直接告诉学生本节课的重点是什么、怎样突破难点,而是通过具体问题的引导让学生自己找到重点、并通过学生自己的思考、讨论解决疑难问题。学生在教师的引导下通过自己的努力、讨论解决了疑难后,学生会非常兴奋,从而会越来越喜欢数学建模课。相反,在没有教师引导的数学建模课堂中,学生经常被困难吓倒,从而对数学建模课产生畏惧感。由此可见,教师对学生的科学引导是学生学好数学建模必不可少的环节。在以学生为本、注重学生全面发展、提倡课堂中突出学生主体地位的背景下,教师的引导仍是数学建模课堂中不可缺失的要素。数学建模课堂中学生的自主探究、合作学习与教师的科学引导并不矛盾而是相辅相成的。只有在教师科学、适时、适当地引导下才能更好地突出学生的主体地位,从而打造出自主探究、合作学习、愉悦发展的高效数学建模课堂。
数学实验与建模报告范文 第6篇
摘要:随着现代社会的发展,数学的广泛用途已经无需质疑,他深入到我们生活的方方面面。现阶段,数学建模已经成为应用数学知识解决日常问题的一个重要手段。本文通过简述数学建模的方法与过程,以及应用数学建模解决实际经济问题的应用,展现的了数学学习的重要意义,以及数学在经济问题解决中的重要作用。
关键词:数学;数学建模;经济;应用
经济现象具有多变性,随着经济社会的发展,国际间贸易往来的日趋紧密,日常经济形势受到的影响因素越来越复杂多变。而日常经济生活中所遇到的经济现象同样存在着诸多的变化的影响因素。如何应对这些难以把控的变量,做好风险的预估、成本的核算、进行最大成本的规划,所有这些都可以借助数学知识、应用数学建模为工具进行较为理性的计算,为经济决策、企业规划提供重要的帮助。
一、数学建模
数学建模,其实就是建立数学模型的简称,实际上数学建模可以称之为解决问题的一种思考方法,借助数学工具应用已知的定理定义进行合理的运算,推导出一种理性的结果的过程。数学建模是可以联系数学和外部世界的一个中介和桥梁,在工业设计、经济领域、工程建设等各个方面,运用数学的语言和方法进行问题的求解和推导,实际上,都是一种数学建模的过程。数学建模的主要过程可以总结为如下的框图形式:实际上,数学模型的最终建立是一个反复验证、修改、完善的动态过程,很少能够通过一次过程就建立起完美适合实际问题的数学模型。通过上述过程的多次循环执行:1.模型准备:分析问题,明确建模的目的,统计各种信息数据;2.模型假设:根据建模目的,结合实际对象的特性,对复杂问题进行简化,提取主要因素,提炼精确的数学语言;3.模型建立:根据提炼的主要因素,选择适当的数学工具,建立各个量(变量、常量)间的数学关系,化实际问题为数学语言;4.模型求解:对上述数学关系进行求解(包括解方程、图形分析、逻辑运算等);5.模型分析:将求解结果与实际问题结合,综合分析,找到模型的缺陷和不足,进行数学上的优化,建立稳定模型;6.模型检验:将模型得到的结果与实际情况相验证,检验模型的合理性和适用性。
二、经济问题数学模型的建立
经济类问题因为其特有的特点,可以按照变量的性质分为两类:概率型和确定型。概率型应用于处理具有随机性情况的模型,可以解决类似风险评估、最优产量计算、库存平衡等问题;确定型则可以基于一定的条件与假设,精确的对一种特定情况的结果做出判断,如成本核算、损失评估等。对经济问题的建模计算实际上是一个从经济世界进入数学世界再回到经济世界的过程。建立经济数学模型,需要首先对实际经济问题和情况有一个较为深入的认识,然后通过细致的观察梳理,抽出最为本质的特征性的东西。将原始的复杂的经济问题简化提炼为一个较为理想的自然模型,然后基于这个原始模型应用数学知识建立完整的数学经济模型。
三、建模举例
随着网购的日益普及,诸多电商平台都建立起自己的配送仓库,通过提前库存一定量的商品,达到配送时效短,降低物流成本的目的。如何增强库存的流通,减少库存费用成本,降资金占用,是每个电商所需要考虑的问题。库存过多,导致商品积压、资金占用,且库存费用高:库存过少,导致商品脱销缺货、紧急配送,物流成本高,并且影响销售。如何合理的安排库存量,从而达到合理的动态平衡呢?假设某价值1元的小商品,每次订货综合费用为25元,月需求量为1000件,设需要分x批次进货,为保证不脱销库存量需要保证为每次进货量的一半。并且知道库存保管费用为成本的20%。那么,应当分为几个批次进货,可以在保证货物供应的情况下达到成本最低呢?
四、结语
综上所述,我们可以看到,数学建模在经济中的应用可以非常广泛,对很多的决策和工作都可以提供参考和指导,如提高利润、规避风险、降低成本、节省开支等各个方面。上文只提供了一个简单的例子,和初步的介绍,其深入的理念和概念更加值得我们去努力的学习和思考。
数学实验与建模报告范文 第7篇
摘要:数学建模即为解决现实生活中的实际问题而建立的数学模型,它是数学与现实世界的纽带。结合教学案例,利用认知心理学知识,提出促进学生建立良好数学认知结构以及数学学习观的原则和方法,帮助学生由知识型向能力型转变,推进素质教育发展。
关键词:认知心理学;思想;数学建模;认知结构;学习观
认知心理学(CognitivePsychology)兴起于20世纪60年代,是以信息加工理论为核心,研究人的心智活动为机制的心理学,又被称为信息加工心理学。它是认知科学和心理学的一个重要分支,它对一切认知或认知过程进行研究,包括感知觉、注意、记忆、思维和言语等[1]。当代认知心理学主要用来探究新知识的识记、保持、再认或再现的信息加工过程中关于学习的认识观。而这一认识观在学习中体现较突出的即为数学建模,它是通过信息加工理论对现实问题运用数学思想加以简化和假设而得到的数学结构。本文通过构建数学模型将“认知心理学”的思想融入现实问题的处理,结合教学案例,并提出建立良好数学认知结构以及数学学习观的原则和方法,进一步证实认知心理学思想在数学建模中的重要性。
一、案例分析
20xx年微软公司在招聘毕业大学生时,给面试人员出了这样一道题:假如有800个形状、大小相同的球,其中有一个球比其他球重,给你一个天平,请问你可以至少用几次就可以保证找出这个较重的球?面试者中不乏名牌大学的本科、硕士甚至博士,可竟无一人能在有限的时间内回答上来。其实,后来他们知道这只是一道小学六年级“找次品”题目的变形。
(一)问题转化,认知策略
我们知道,要从800个球中找到较重的一个球这一问题如果直接运用推理思想应该会很困难,如果我们运用“使复杂问题简单化”这一认知策略,问题就会变得具体可行。于是,提出如下分解问题。问题1.对3个球进行实验操作[2]。问题2.对5个球进行实验操作。问题3.对9个球进行实验操作。问题4.对4、6、7、8个球进行实验操作。问题5.如何得到最佳分配方法。
(二)模型分析,优化策略
通过问题1和问题2,我们知道从3个球和5个球中找次品,最少并且保证找到次品的分配方法是将球分成3份。但这一结论只是我们对实验操作的感知策略。为了寻找策略,我们设计了问题3,对于9个球的最佳分配方法也是分为3份。因此我们得到结论:在“找次品”过程中,结合天平每次只能比较2份这一特点,重球只可能在天平一端或者第3份中,同时,为了保证最少找到,9个球均分3份是最好的方法。能被3除尽的球我们得到均分这一优化策略,对于不能均分的球怎么分配?于是我们设计了问题4,通过问题4我们得到结论:找次品时,尽量均分为3份,若不能均分要求每份尽量一样,可以多1个或少1个。通过问题解决,我们建立新的认知结构:2~3个球,1次;3+1~32个球,2次;32+1~33个球,3次;……
(三)模型转化,归纳策略
通过将新的认知结构运用到生活实践,我们知道800在36~37之间,所以我们得到800个球若要保证最少分配次数是7次。在认知心理学中,信息的具体表征和加工过程即为编码。编码并不被人们所觉察,它往往以“刺激”的形式表现为知觉以及思想。在信息加工过程中,固有的知识经验、严密的逻辑思维能力以及抽象概况能力将为数学建模中能力的提高产生重要的意义。
二、数学建模中认知心理学思想融入
知识结构和认知结构是认知心理学的两个基本概念[3]。数学是人类在认识社会实践中积累的经验成果,它起源于现实生活,以数字化的形式呈现并用来解决现实问题。它要求人们具有严密的逻辑思维以及空间思维能力,并通过感知、记忆、理解数形关系的过程中形成一种认知模型或者思维模式。这种认知模型通常以“图式”的形式存在于客体的头脑,并且可以根据需要随时提取支配。
(一)我国数学建模的现状
《课程标准(20xx年版)》将模型思想这一核心概念的引入成为数学学习的主要方向。其实,数学建模方面的文章最早出自1982年张景中教授论文“洗衣服的数学”以及“垒砖问题”。虽然数学建模思想遍布国内外,但是真正将数学建模融入教学,从生活事件中抽取数学素材却很难。数学建模思想注重知识应用,通过提取已有“图式”→加工信息→形成新的认知结构的方式内化形成客体自身的“事物结构”,其不仅具有解释、判断、预见功能,而且能够提高学生学习数学的兴趣和应用意识[4]。
(二)结合认知心理学思想,如何形成有效的数学认知结构
知识结构与智力活动相结合,形成有效认知结构。我们知道,数学的知识结构是前人在总结的基础上,通过教学大纲、教材的形式呈现,并通过语言、数字、符号等形式详细记述的。学生在学习时,通过将教材中的知识简约化为特定的语言文字符号的过程叫作客体的认知结构,这一过程中,智力活动起了重要作用。复杂的知识结构体系、内心体验以及有限的信息加工容量让我们不得不针对内外部的有效信息进行筛选。这一过程中,“注意”起到重要作用,我们在进行信息加工时,只有将知识结构与智力活动相结合,增加“有意注意”和“有意后注意”,才能够形成有效的数学认知结构。根据不同构造方式,形成有利认知结构。数学的知识结构遵循循序渐进规律,并具有严密的逻辑性和准确性,它是形成不同认知结构的基础。学生头脑中的认知结构则是通过积累和加工而来,即使数学的知识结构一样,不同的人仍然会形成不同的`认知结构。这一特点取决于客体的智力水平、学习能力。因此若要形成有利认知结构,必须遵循知识发展一般规律,注重知识的连贯性和顺序性,考虑知识的积累,注重逻辑思维能力的提高。
三、认知心理学思想下的数学学习观
学习是学习者已知的、所碰到的信息和他们在学习时所做的之间相互作用的结果[5]。如何将数学知识变为个体的知识,从认知心理学角度分析,即如何将数学的认知结构吸收为个体的认知结构,即建立良好的数学学习观,这一课题成为许多研究者关注的对象。那么怎样学习才能够提高解决数学问题的能力?或者怎样才能构建有效的数学模型,接下来我们将根据认知心理学知识,提出数学学习观的构建原则和方法。
(一)良好数学学习观应该是“双向产生式”的信息
加工过程学习是新旧知识相互作用的结果,是人们在信息加工过程中,通过提取已有“图式”将新输入的信息与头脑中已存储的信息进行有效联系而形成新的认知结构的过程[6]。可是,当客体对于已有“图式”不知如何使用,或者当遇到可以利用“图式”去解决的问题时不知道去提取相应的知识,学习过程便变得僵化、不知变通。譬如,案例中,即使大部分学生都学习了“找次品”这部分内容,却只能用来解决比较明确的教材性问题,对于实际生活问题却很难解决。学习应该是“双向产生式”的信息加工过程,数学的灵活性在这方面得到了较好的体现。学习时应遵循有效记忆策略,将所学知识与该知识有联系的其他知识结合记忆,形成“流动”的知识结构。例如在案例中,求800个球中较重球的最少次数,可以先从简单问题出发,对3个球和5个球进行分析,猜测并验证出一般分配方法。这一过程需要有效提取已有知识经验,通过拟合构造,不仅可以提高学生学习兴趣,而且能够增强知识认识水平和思维能力。
(二)良好数学学习观应该具有层次化、条理化的认知结构
如果头脑中仅有“双向产生式”的认知结构,当遇到问题时,很难快速找到解决问题的有效条件。头脑中数以万计“知识组块”必须形成一个系统,一个可以大大提高检索、提取效率的层次结构网络。如案例,在寻找最佳分配方案时,我们可以把8个球中找次品的所有分配情况都罗列出来。这样做,打破了“定势”的限制,而以最少称量次数为线索来重新构造知识,有助于提高学生发散思维水平,使知识结构更加具有层次化、条理化。在学习过程中,随着头脑中信息量的增多,层次结构网络也会越来越复杂。因此,必须加强记忆的有效保持,巩固抽象知识与具体知识之间的联系,能够使思维在抽象和现实之间灵活转化。而这一过程的优化策略是有效练习。
(三)良好数学学习观应该具有有效的思维策略
要想形成有效的数学学习观,提高解决实际问题的能力,头脑中还必须要形成有层次的思维策略,以便大脑在学习和信息加工过程中,策略性思维能够有效加以引导和把控。通过调节高层策略知识与底层描述性及程序性知识之间的转换,不断反思头脑思维策略是否恰当进而做出调整和优化。譬如,在案例中,思维经过转化策略、寻找策略、优化策略、归纳总结四个过程,由一般→特殊→一般问题的求解也是思维由高层向底层再向高层转换的层次性的体现。
在思维策略训练时,我们应重视与学科知识之间的联系度。底层思维策略主要以学科知识的形式存在于头脑,它的迁移性较强,能够与各种同学科问题紧密结合。因此可以通过训练学生如何审题,如何利用已有条件和问题明确思维方向,提取并调用相关知识来解决现实问题。
另外,有效思维训练还必须做到“熟练”,对于课堂需要识记的东西要提前预习并及时复习,对于同类型题目,找出知识之间的关联性组建知识层次结构,有效练习同类型题目,提高解难题能力,做到“熟能生巧”。
总之,认知心理学思想融入数学建模是非常有必要和有意义的。数学建模的最终目标是培养学生用数学的眼光观察问题,用数学的思维思考问题,用数学的方法解决问题的能力[4]。数学建模的过程即为已有信息经过智力加工→编码而形成心理产物,这一过程需要运用到数学知识系统和思维操作系统。因此,要想提高学生数学建模能力、搭建理论与实践的桥梁、促进学生由知识型向能力型转变、推进素质教育发展,除了教师的引导、学校的重视外,学生自身在认知结构、信息构建、思维策略、训练方式等方面也应提出新的思考。
数学实验与建模报告范文 第8篇
[论文关键词]建模地位 建模实践 建模意识
[论文摘要]建模能力的培养,不只是通过实际问题的解决才能得到提高,更主要的是要培养一种建模意识,解题模型的构造也是一条培养建模方法的很好的途径。
一、建模地位
数学是关于客观世界模式和秩序的科学,数、形、关系、可能性、最大值、最小值和数据处理等等,是人类对客观世界进行数学把握的最基本反映。数学方法越来越多地被用于环境科学、自然资源模拟、经济学和社会学,甚至还有心理学和认知科学,其中建模方法尤为突出。数学教育家汉斯·弗赖登塔尔认为:“数学来源于现实,存在于现实,并且应用于现实,数学过程应该是帮助学生把现实问题转化为数学问题的过程。”《新课程标准》中强调:“数学教学是数学活动,教师要紧密联系学生的生活环境,要重视从学生的生活实践经验和已有的知识中学习数学和理解数学。”
因此,不管从社会发展要求还是从新课标要求来看,培养学生的建构意识和建模方法成了高中数学教学中极其重要内容之一。在新课标理念指导下,同时结合自己多年的教学实践,我认为:培养建模能力,不能简单地说是培养将实际问题转化为数学问题的能力,课堂教学中更重要的是要培养学生的建模意识。以下我就从一堂习题课的片段加以说明我的观点及认识。
二、建模实践
片段、用模型构造法解计数问题(计数原理习题课)。
计数问题情景多样,一般无特定的模式和规律可循,对思维能力和分析能力要求较高,如能抓住问题的条件和结构,利用适当的模型将问题转化为常规问题进行求解,则能使之更方便地获得解决,从而也能培养学生建模意识。
例1:从集合{1,2,3,…,20}中任选取3个不同的数,使这3个数成等差数列,这样的等差数列可以有多少个?
解:设a,b,c∈N,且a,b,c成等差数列,则a+c=2b,即a+c是偶数,因此从1到20这20个数字中任选出3个数成等差数列,则第1个数与第3个数必同为偶数或同为奇数,而1到20这20个数字中有10个偶数,10个奇数。当第1和第3个数选定后,中间数被唯一确定,因此,选法只有两类:
(1)第1和第3个数都是偶数,有几种选法;(2)第1和第3个数都是奇数,有几种选法;于是,选出3个数成等差数列的个数为:2=180个。
解后反思:此题直接求解困难较大,通过模型之间转换,将原来求等差数列个数的问题,转化为从10个偶数和10个奇数每次取出两个数且同为偶数或同为奇数的排列数的模型,使问题迎刃而解。
例2:在一块并排10垄的田地中,选择2垄分别种植A,B两种不同的作物,每种作物种植一垄,为了有利于作物生长,要求A,B两种作物的间隔不小于6垄,则不同的选垄方法共有几种(用数字作答)。
解法1:以A,B两种作物间隔的垄数分类,一共可以分成3类:
(1)若A,B之间隔6垄,选垄办法有3种;(2)若A,B之间隔7垄,选垄办法有2种;(3)若A,B之间隔8垄,选垄办法有种;故共有不同的选垄方法3+2+=12种。
解法2:只需在A,B两种作物之间插入“捆绑”成一个整体的6垄田地,就可以满足题意。因此,原问题可以转化为:在一块并排4垄的田地中,选择2垄分别种植A,B两种作物有 种,故共有不同的选垄方法=12种。
解后反思:解法1根据A,B两种作物间隔的垄数进行分类,简单明了,但注意要不重不漏。解法2把6垄田地“捆绑”起来,将原有模型进行重组,使有限制条件的问题变为无限制条件的问题,极大地方便了解题。
三、建模认识
从以上片段可以看到,其实数学建模并不神秘,只要我们老师有建模意识,几乎每章节中都有很好模型素材。
现代心理学的研究表明,对许多学生来说,从抽象到具体的转化并不比具体到抽象遇到的困难少,学生解数学应用题的最常见的困难是不会将问题提炼成数学问题,即不会建模。在新课标要求下我们怎样才能有效培养学生建模意识呢?我认为我们不仅要认识到新课标下建模的地位和要有建模意识,还应该要认识什么是数学建模及它有哪些基本步骤、类型。以下是对数学建模的一些粗浅认识。
所谓数学建模就是通过建立某个数学模型来解决实际问题的方法。数学模型可以是某个图形,也可以是某个数学公式或方程式、不等式、函数关系式等等。从这个意义上说,以上一堂课就是很好地建模实例。
一般的数学建模问题可能较复杂,但其解题思路是大致相同的,归纳起来,数学建模的一般解题步骤有:
1.问题分析:对所给的实际问题,分析问题中涉及到的对象及其内在关系、结构或性态,郑重分析需要解决的问题是什么,从而明确建模目的。
2.模型假设:对问题中涉及的对象及其结构、性态或关系作必要的简化假设,简化假设的目的是为了用尽可能简单的数学形式建立模型,简化假设必须基本符合实际。
3.模型建立:根据问题分析及模型假设,用一个适当的数学形式来反映实际问题中对象的性态、结构或内在联系。
4.模型求解:对建立的数学模型用数学方法求出其解。
5.把模型的数学解翻译成实际解,根据问题的实际情况或各种实际数据对模型及模型解的合理性、适用性、可靠性进行检验。
从建模方法的角度可以给出高中数学建模的几种重要类型:
1.函数方法建模。当实际问题归纳为要确定某两个量(或若干个量)之间的数量关系时,可通过适当假设,建立这两个量之间的某个函数关系。
2.数列方法建模。现实世界的经济活动中,诸如增长率、降低率、复利、分期付款等与年份有关的实际问题以及资源利用、环境保护等社会生活的热点问题常常就归结为数列问题。即数列模型。
3.枚举方法建模。许多实际问题常常涉及到多种可能性,要求最优解,我们可以把这些可能性一一罗列出来,按照某些标准选择较优者,称之为枚举方法建模,也称穷举方法建模(如我们熟悉的线性规划问题)。
4.图形方法建模。很多实际问题,如果我们能够设法把它“翻译”成某个图形,那么利用图形“语言”常常能直观地得到问题的求解方法,我们称之为图形方法建模,在数学竞赛的图论中经常用到。
从数学建模的定义、类型、步骤、概念可知,其实数学建模并不神秘,有时多题一解也是一种数学建模,只有我们认识到它的重要性,心中有数学建模意识,才能有效地引领学生建立数学建模意识,从而掌握建模方法。
数学实验与建模报告范文 第9篇
一)论文形式:科学论文
科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。
注意:它不是感想,也不是调查报告。
(二)论文选题:新颖,有意义,力所能及。
要求:
有背景.
应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。理论问题要了解问题的研究现状及其理论价值。要做必要的学术调研和研究特色。
有价值
有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。
有基础
对所研究问题的背景有一定了解,掌握一定量的参考文献,积累了一些解决问题的方法,所研究问题的数据资料是能够获得的。
有特色
思路创新,有别于传统研究的新思路;
方法创新,针对具体问题的特点,对传统方法的改进和创新;
结果创新,要有新的,更深层次的结果。
问题可行
适合学生自己探究并能够完成,要有学生的特色,所用知识应该不超过初中生(高中生)的能力范围。
(三)(数学应用问题)数据资料:来源可靠,引用合理,目标明确
要求:
数据真实可靠,不是编的数学题目;
数据分析合理,采用分析方法得当数学建模论文格式模板以及要求数学建模论文格式模板以及要求。
(四)(数学应用问题)数学模型:通过抽象和化简,使用数学语言对实际问题的一个近似描述,以便于人们更深刻地认识所研究的对象。
要求:
抽象化简适中,太强,太弱都不好;
抽象出的数学问题,参数选择源于实际,变量意义明确;
数学推理严格,计算准确无误,得出结论;
将所得结论回归到实际中,进行分析和检验,最终解决问题,或者提出建设性意见;
问题和方法的进一步推广和展望。
(五)(数学理论问题)问题的研究现状和研究意义:了解透彻
要求:
对问题了解足够清楚,其中指导教师的作用不容忽视;
问题解答推理严禁,计算无误;
突出研究的特色和价值。
(六)论文格式:符合规范,内容齐全,排版美观
1. 标题:是以最恰当、最简明的词语反映论文中主要内容的逻辑组合。
要求:反映内容准确得体,外延内涵恰如其分,用语凝练醒目。
2. 摘要:全文主要内容的简短陈述。
要求:
1)摘要必须指明研究的主要内容,使用的主要方法,得到的主要结论和成果;
2)摘要用语必须十分简练
3)不要举例,不要讲过程,不用图表,不做自我评价。
3. 关键词:文章中心内容所涉及的重要的单词,以便于信息检索。
要求:数量不要多,以3-5各为宜,不要过于生僻。
(七). 正文
1)前言:
问题的背景:问题的来源;
提出问题:需要研究的内容及其意义;
文献综述:国内外有关研究现状的回顾和存在的问题;
概括介绍论文的内容,问题的结论和所使用的方法。
2)主体:
(数学应用问题)数学模型的组建、分析、检验和应用等。
(数学理论问题)推理论证,得出结论等。
3)讨论:
解释研究的结果,揭示研究的价值, 指出应用前景, 提出研究的不足。
要求:
1)背景介绍清楚,问题提出自然;
2)思路清晰,涉及到得数据真是可靠,推理严密,计算无误;
3)突出所研究问题的难点和意义。
5. 参考文献:
是在文章最后所列出的文献目录。他们是在论文研究过程中所参考引用的主要文献资料,是为了说明文中所引用的的论点、公式、数据的来源以表示对前人成果的尊重和提供进一步检索的线索。
要求:
1)文献目录必须规范标注;
2)文末所引的文献都应是论文中使用过的文献,并且必须在正文中标明数学建模论文格式模板以及要求论文。
(七)数学建模论文模板
1. 论文标题
摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息
一般说来,摘要应包含以下五个方面的内容:
①研究的主要问题;
②建立的什么模型;
③用的什么求解方法;
④主要结果(简单、主要的);
⑤自我评价和推广。
摘要中不要有关键字和数学表达式。
数学建模竞赛章程规定,对竞赛论文的评价应以:
①假设的合理性
②建模的创造性
③结果的正确性
④文字表述的清晰性 为主要标准。
所以论文中应努力反映出这些特点。
注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。
数学实验与建模报告范文 第10篇
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。
数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。
因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和创新思维,提高其素质和创新能力,实现向素质教育的转化和深入。
一、数学建模的含义及特点
数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学方法及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。
一般来说“,数学建模”包含五个阶段。
1.准备阶段
主要分析问题背景,已知条件,建模目的等问题。
2.假设阶段
做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3.建立阶段
从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4.求解阶段
对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5.验证阶段
用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。
如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
二、加强数学建模教育的作用和意义
(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质
数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。
数学修养和素质自然而然得以培养并提高。
(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力
数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。
因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。
(三)加强数学建模教育有助于培养学生的创造性思维和创新能力
所谓创造力是指“对已积累的知识和经验进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、记忆力、思考力、想象力四种能力所构成”[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。
很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。
而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。
同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].
(四)加强数学建模教育有助于提高学生科技论文的撰写能力
数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。
经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。
(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。
要较好地完成任务,离不开良好的组织与管理、分工与协作[3].
三、开展数学建模教育及活动的具体途径和有效方法
(一)开展数学建模课堂教学
即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。
案例教学法的关键在于把握两个重要环节:
案例的选取和课堂教学的组织。
教学案例一定要精心选取,才能达到预期的教学效果。
其选取一般要遵循以下几点。
1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。
2. 原始性:来自媒体的信息,企事业单位的报告,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。
3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。
案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。
还要强调如何用求解结果去解释实际现象即检验模型。
另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。
最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的“满堂灌”,也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].
(二)开展数模竞赛的专题培训指导工作
建立数学建模竞赛指导团队,分专题实行教师负责制。
每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。
如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。
学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。
这种针对性的数模教学,会极大地提高教学效率。
(三)建立数学建模网络课程
以现代网络技术为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。
以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。
[5,6]
(四)开展校内数学建模竞赛活动
完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。
笔者负责数学建模竞赛培训近20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。
多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。
如年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。
又如年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。
(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛
全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。
参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。
四、结束语
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的`创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。
因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。
参考文献:
[1]辞海[M].上海辞书出版社,,1:237.
[2]许梅生,章迪平,张少林。
数学建模的认识与实践[J].浙江科技学院学报,,15(1):40-42.
[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,,12:79-83.
[4]饶从军,王成。
论高校数学建模教学[J].延边大学学报(自然科学学版),,32(3):227-230.
[5]段璐灵。
数学建模课程教学改革初探[J].教育与职业,,5:140-142.
[6]郝鹏鹏。
工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.
数学实验与建模报告范文 第11篇
数学建模论文初中:数学教学中的数学建模能力的培养
一、在高等数学教学中运用数学建模思想的重要性
(1)将教材中的数学知识运用现实生活中的对象进行还原,让学生树立数学知识来源于现实生活的思想观念。
(2)数学建模思想要求学生能够通过运用相应的数学工具和数学语言,对现实生活中的特定对象的信息、数据或者现象进行简化,对抽象的数学对象进行翻译和归纳,将所求解的数学问题中的数量关系运用数学关系式、数学图形或者数学表格等形式进行表达,这种方式有利于培养、锻炼学生的数学表达能力。
(3)在运用数学建模思想获得实际的答案后,需要运用现实生活对象的相关信息对其进行检验,对计算结果的准确性进行检验和确定。该流程能够培养学生运用合理的数学方法对数学问题进行主动性、客观性以及辩证性的分析,最后得到最有效的解决问题的方法。
二、高等数学教学中数学建模能力的培养策略
1.教师要具备数学建模思想意识
在对高等数学进行教学的过程中,培养学生运用数学建模思想,首先教师要具备足够的数学建模意识。教师在进行高等数学教学之前,首先,要对所讲数学内容的相关实例进行查找,有意识的实现高等数学内容和各个不同领域之间的联系;其次,教师要实现高等数学教学内容与教学要求的转变,及时的更新自身的教学观念和教学思想。例如,教师细心发现现实生活中的小事,然后运用这些小事建造相应的数学模型,这样不仅有利于营造活跃的课堂环境,而且还有利于激发学生的学习兴趣。
2.实现数学建模思想和高等数学教材的互相结合
教师在讲解高等数学时,对其中能够引入数学模型的章节,要构建相关的数学模型,对其提出相应的问题,进行分析和处理。在该基础上,提出假设,实现数学模型的完善。教师在高等数学的教学中融入建模意识,让学生潜移默化的感受到建模思想在高等数学教学中应用的效果。这样有利于提高学生数学知识的运用能力和学习兴趣。例如,在进行教学时,针对学生所学专业的特点,选择科学、合理的数学案例,运用数学建模思想对其进行相应的加工后,作为高等数学讲授的应用例题。这样不仅能够让学生发现数学发挥的巨大作用,而且还能够有效的提高学生的数学解题水平。另外,数学课结束后,转变以往的作业模式,给学生布置一些具有专业性、数学性的习题,让学生充分利用网络资源,自主建立数学模型,有效的解决问题。
3.理清高等数学名词的概念
高等数学中的数学概念是根据实际需要出现的,所以在数学的教学中,教师要引起从实际问题中提取数学概念的整个过程,对学生应用数学的兴趣进行培养。例如在高等数学
教材中,导数和定积分是其中的比较重要的概念,因此,教师在进行教学时,要引导学生理清这两个的概念。比如导数概念是由几何曲线中的切线斜率引导出来的,定积分的概念是由局部取近似值引出的,将常量转变为变量。
4.加强数学应用问题的培养
高等数学中,主要有以下几种应用问题:
(1)最值问题
在高等数学教材中,最值问题是导数应用中最重要的问题。教师在教学过程中通过对最值问题的解题步骤进行归纳,能够有效地将数学建模的基本思想进行反映。因此,在对这部分内容进行教学时,要增加例题,加大学生的练习,开拓学生的思维,让学生熟练掌握最值问题的解决办法。
(2)微分方程
在微分方程的教学中运用数学建模思想,能够有效地解决实际问题。微分方程所构建的数学模型不具有通用的规则。首先,要确定方程中的变量,对变量和变化率、微元之间的关系进行分析,然后运用相关的物理理论、化学理论或者工程学理论对其进行实验,运用所得出的定理、规律来构建微分方程;其次,对其进行求解和验证结果。微分方程的概念主要从实际引入,坚持由浅入深的原则,来对现实问题进行解决。例如,在对学生讲解外有引力定律时,让学生对万有引力的提出、猜想进行探究,了解到在其发展的整个过程中,数学发挥着十分重要的作用。
(3)定积分
微元法思想用途比较广泛,其主要以定积分概念为基础,在数学中渗入定积分概念,让学生对定积分概念的意义进行分析和了解,这样有利于在对实际问题进行解决时,树立“欲积先分”意识,意识到运用定积分是解决微元实际问题的重要方法。教师在布置作业题时,要增加该问题的实例。
三、结语
总之,在高等数学中对学生的数学建模能力进行培养,让学生在解题的过程中运用数学建模思想和数学建模方法,能够有效地激发学生的学习兴趣,提高学生的分析、解决问题的能力以及提高学生数学知识的运用能力。